Skip to main content

Part of the book series: Mathematics and Visualization ((MATHVISUAL))

Abstract

Traditional path-based morphology allows finding long, approximately straight, paths in images. Although originally applied only to scalar images, we show how this can be a very good fit for tensor fields. We do this by constructing directed graphs representing such data, and then modifying the traditional path opening algorithm to work on these graphs. Cycles are dealt with by finding strongly connected components in the graph. Some examples of potential applications are given, including path openings that are not limited to a specific set of orientations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    A tangent vector can be considered an element in the tangent bundle, and is a combination of a position and a vector describing an orientation/direction. Physically, a tangent vector can be considered to describe the position and velocity of a particle, for example.

  2. 2.

    Code available at http://bit.ly/1zpfIXf.

  3. 3.

    This makes some intuitive sense, as every voxel contains the same amount of space, but at a crossing it is shared by fibres of multiple orientations.

References

  1. Angulo, J.: Supremum/infimum and nonlinear averaging of positive definite symmetric matrices. In: Nielsen, F., Bhatia, R. (eds.) Matrix Information Geometry, pp. 3–33. Springer, Berlin/Heidelberg (2013). doi:10.1007/978-3-642-30232-9_1

    Chapter  Google Scholar 

  2. Astola, J., Haavisto, P., Neuvo, Y.: Vector median filters. Proc. IEEE 78(4), 678–689 (1990). doi:10.1109/5.54807

    Article  Google Scholar 

  3. Bastiani, M., Shah, N.J., Goebel, R., Roebroeck, A.: Human cortical connectome reconstruction from diffusion weighted MRI: the effect of tractography algorithm. NeuroImage 62(3), 1732–1749 (2012). doi:10.1016/j.neuroimage.2012.06.002

    Article  Google Scholar 

  4. Bismuth, V., Vaillant, R., Talbot, H., Najman, L.: Curvilinear structure enhancement with the polygonal path image - application to guide-wire segmentation in X-ray fluoroscopy. In: Ayache, N., Delingette, H., Golland, P., Mori, K. (eds.) Medical Image Computing and Computer-Assisted Intervention. Lecture Notes in Computer Science, vol. 7511, pp. 9–16. Springer, Berlin/Heidelberg (2012). doi:10.1007/978-3-642-33418-4_2

    Google Scholar 

  5. Björklund, A., Husfeldt, T., Khanna, S.: Approximating longest directed paths and cycles. In: Díaz, J., Karhumäki, J., Lepistö, A., Sannella, D. (eds.) Automata, Languages and Programming. Lecture Notes in Computer Science, vol. 3142, pp. 222–233. Springer, Berlin/Heidelberg (2004). doi:10.1007/978-3-540-27836-8_21

    Chapter  Google Scholar 

  6. Booth, B.G., Hamarneh, G.: Multi-region competitive tractography via graph-based random walks. In: Proceedings IEEE Workshop on Mathematical Methods in Biomedical Image Analysis, pp. 73–78 (2012). doi:10.1109/mmbia.2012.6164747

    Google Scholar 

  7. Bourbaki, N.: Algebra I. Elements of Mathematics. Springer, Berlin (1989)

    Google Scholar 

  8. Burgeth, B., Bruhn, A., Didas, S., Weickert, J., Welk, M.: Morphology for matrix data: ordering versus PDE-based approach. Image Vis. Comput. 25(4), 496–511 (2007). doi:10.1016/j.imavis.2006.06.002

    Article  Google Scholar 

  9. Citti, G., Sarti, A.: A cortical based model of perceptual completion in the Roto-translation space. J. Math. Imaging Vision 24(3), 307–326 (2006). doi:10.1007/s10851-005-3630-2

    Article  MathSciNet  Google Scholar 

  10. Cokelaer, F., Talbot, H., Chanussot, J.: Efficient robust d-dimensional path operators. IEEE J. Sel. Top. Signal Process. 6(7), 830–839 (2012). doi:10.1109/jstsp.2012.2213578

    Article  Google Scholar 

  11. Comon, P., Golub, G., Lim, L.H., Mourrain, B.: Symmetric tensors and symmetric tensor rank. SIAM J. Matrix Anal. Appl. 30(3), 1254–1279 (2008). doi:10.1137/060661569

    Article  MathSciNet  MATH  Google Scholar 

  12. Dell’Acqua, F., Scifo, P., Rizzo, G., Catani, M., Simmons, A., Scotti, G., Fazio, F.: A modified damped Richardson–Lucy algorithm to reduce isotropic background effects in spherical deconvolution. NeuroImage 49(2), 1446–1458 (2010). doi:10.1016/j.neuroimage.2009.09.033

    Article  Google Scholar 

  13. Dell’Acqua, F., Simmons, A., Williams, S.C.R., Catani, M.: Can spherical deconvolution provide more information than fiber orientations? Hindrance modulated orientational anisotropy, a true-tract specific index to characterize white matter diffusion. Hum. Brain Mapp. 34(10), 2464–2483 (2013). doi:10.1002/hbm.22080

    Article  Google Scholar 

  14. Descoteaux, M., Deriche, R., Knosche, T.R., Anwander, A.: Deterministic and probabilistic tractography based on complex fibre orientation distributions. IEEE Trans. Med. Imaging 28(2), 269–286 (2009). doi:10.1109/tmi.2008.2004424

    Article  Google Scholar 

  15. Duits, R.: Perceptual organization in image analysis: a mathematical approach based on scale, orientation and curvature. PhD thesis, Eindhoven University of Technology (2005)

    Google Scholar 

  16. Duits, R., Franken, E.: Left-invariant parabolic evolutions on SE(2) and contour enhancement via invertible orientation scores. Part I: Linear left-invariant diffusion equations on SE(2). Q. Appl. Math. 68(2), 255–292 (2010). doi:10.1090/s0033-569x-10-01172-0

    Google Scholar 

  17. Duits, R., Franken, E.: Left-invariant parabolic evolutions on SE(2) and contour enhancement via invertible orientation scores. Part II: Nonlinear left-invariant diffusions on invertible orientation scores. Q. Appl. Math. 68(2), 293–331 (2010). doi:10.1090/s0033-569x-10-01173-3

    MathSciNet  Google Scholar 

  18. Duits, R., Dela Haije, T.C.J., Creusen, E., Ghosh, A.: Morphological and linear scale spaces for fiber enhancement in DW-MRI. J. Math. Imaging Vision 46(3), 326–368 (2013). doi:10.1007/s10851-012-0387-2

    Article  MathSciNet  MATH  Google Scholar 

  19. Franken, E.M.: Enhancement of crossing elongated structures in images. PhD thesis, Eindhoven University of Technology (2008)

    Google Scholar 

  20. Franken, E., Duits, R.: Crossing-preserving coherence-enhancing diffusion on invertible orientation scores. Int. J. Comput. Vis. 85(3), 253–278 (2009). doi:10.1007/s11263-009-0213-5

    Article  MathSciNet  Google Scholar 

  21. van de Gronde, J.J., Roerdink, J.B.T.M.: Frames for tensor field morphology. In: Nielsen, F., Barbaresco, F. (eds.) Geometric Science of Information. Lecture Notes in Computer Science, vol. 8085, pp. 527–534. Springer, Berlin/Heidelberg (2013). doi:10.1007/978-3-642-40020-9_58

    Chapter  Google Scholar 

  22. Heijmans, H.J.A.M.: Morphological Image Operators. Academic, Boston (1994)

    MATH  Google Scholar 

  23. Heijmans, H., Buckley, M., Talbot, H.: Path-based morphological openings. In: IEEE International Conference on Image Processing, vol. 5, pp. 3085–3088 (2004). doi:10.1109/icip.2004.1421765

    Google Scholar 

  24. Heijmans, H., Buckley, M., Talbot, H.: Path openings and closings. J. Math. Imaging Vision 22(2), 107–119 (2005). doi:10.1007/s10851-005-4885-3

    Article  MathSciNet  MATH  Google Scholar 

  25. Iturria-Medina, Y., Canales-Rodríguez, E.J., Melie-García, L., Valdés-Hernández, P.A., Martínez-Montes, E., Alemán-Gómez, Y., Sánchez-Bornot, J.M.: Characterizing brain anatomical connections using diffusion weighted MRI and graph theory. NeuroImage 36(3), 645–660 (2007). doi:10.1016/j.neuroimage.2007.02.012

    Article  Google Scholar 

  26. Kahn, A.B.: Topological sorting of large networks. Commun. ACM 5(11), 558–562 (1962). doi:10.1145/368996.369025

    Article  MATH  Google Scholar 

  27. Karger, D., Motwani, R., Ramkumar, G.D.S.: On approximating the longest path in a graph. Algorithmica 18(1), 82–98 (1997). doi:10.1007/bf02523689

    Article  MathSciNet  MATH  Google Scholar 

  28. Kingsley, P.B.: Introduction to diffusion tensor imaging mathematics: Part I. Tensors, rotations, and eigenvectors. Concepts Magn. Reson. 28A(2), 101–122 (2006). doi:10.1002/cmr.a.20048

    Google Scholar 

  29. Knutsson, H., Westin, C.F., Andersson, M.: Structure tensor estimation: introducing monomial quadrature filter sets. In: Laidlaw, D.H., Vilanova, A. (eds.) New Developments in the Visualization and Processing of Tensor Fields. Mathematics and Visualization, pp. 3–28. Springer, Berlin/Heidelberg (2012). doi:10.1007/978-3-642-27343-8_1

    Chapter  Google Scholar 

  30. Kofidis, E., Regalia, P.A.: On the best rank-1 approximation of higher-order supersymmetric tensors. SIAM J. Matrix Anal. Appl. 23(3), 863–884 (2002). doi:10.1137/s0895479801387413

    Article  MathSciNet  Google Scholar 

  31. Kostrikin, A.I., Manin, I.I.: Linear Algebra and Geometry. Algebra, Logic and Applications, vol. 1. Gordon and Breach, Amsterdam (1997)

    Google Scholar 

  32. Köthe, U.: Edge and junction detection with an improved structure tensor. In: Michaelis, B., Krell, G. (eds.) Pattern Recognition. Lecture Notes in Computer Science, vol. 2781, pp. 25–32. Springer, Berlin/Heidelberg (2003). doi:10.1007/978-3-540-45243-0_4

    Google Scholar 

  33. Leemans, A., Jeurissen, B., Sijbers, J., Jones, D.K.: ExploreDTI: a graphical toolbox for processing, analyzing, and visualizing diffusion MR data. In: ISMRM 17th Scientific Meeting & Exhibition, p. 3537 (2009)

    Google Scholar 

  34. Luengo Hendriks, C.L.: Constrained and dimensionality-independent path openings. IEEE Trans. Image Process. 19(6), 1587–1595 (2010). doi:10.1109/tip.2010.2044959

    Article  MathSciNet  MATH  Google Scholar 

  35. McLoughlin, T., Laramee, R.S., Peikert, R., Post, F.H., Chen, M.: Over two decades of integration-based, geometric flow visualization. Comput. Graph. Forum 29(6), 1807–1829 (2010). doi:10.1111/j.1467-8659.2010.01650.x

    Article  Google Scholar 

  36. Melhem, E.R., Mori, S., Mukundan, G., Kraut, M.A., Pomper, M.G., van Zijl, P.C.M.: Diffusion tensor MR imaging of the brain and white matter tractography. Am. J. Roentgenol. 178(1), 3–16 (2002). doi:10.2214/ajr.178.1.1780003

    Article  Google Scholar 

  37. Morard, V., Dokladal, P., Decencière, E.: One-dimensional openings, granulometries and component trees in O(1) per pixel. IEEE J. Sel. Top. Signal Process. 6(7), 840–848 (2012). doi:10.1109/jstsp.2012.2201694

    Article  Google Scholar 

  38. Morard, V., Dokládal, P., Decencière, E.: Parsimonious path openings and closings. IEEE Trans. Image Process. 23(4), 1543–1555 (2014). doi:10.1109/tip.2014.2303647

    Article  MathSciNet  Google Scholar 

  39. Mori, S., van Zijl, P.C.M.: Fiber tracking: principles and strategies – a technical review. NMR Biomed. 15(7–8), 468–480 (2002). doi:10.1002/nbm.781

    Article  Google Scholar 

  40. Nolet, G.: A Breviary of Seismic Tomography. Cambridge University Press, New York (2008)

    Book  MATH  Google Scholar 

  41. Serra, J. (ed.): Theoretical Advances, Image Analysis and Mathematical Morphology, vol. 2. Academic, London (1988)

    Google Scholar 

  42. Serra, J.: Anamorphoses and function lattices. In: Dougherty, E.R., Gader, P.D., Serra, J.C. (eds.) Image Algebra and Morphological Image Processing IV, SPIE Proceedings, vol. 2030, pp. 2–11 (1993). doi:10.1117/12.146650

    Article  MathSciNet  Google Scholar 

  43. Sha, F., Lin, Y., Saul, L.K., Lee, D.D.: Multiplicative updates for nonnegative quadratic programming. Neural Comput. 19(8), 2004–2031 (2007). doi:10.1162/neco.2007.19.8.2004

    Article  MathSciNet  MATH  Google Scholar 

  44. Sotiropoulos, S.N., Bai, L., Morgan, P.S., Constantinescu, C.S., Tench, C.R.: Brain tractography using Q-ball imaging and graph theory: improved connectivities through fibre crossings via a model-based approach. NeuroImage 49(3), 2444–2456 (2010). doi:10.1016/j.neuroimage.2009.10.001

    Article  MATH  Google Scholar 

  45. Talbot, H., Appleton, B.: Efficient complete and incomplete path openings and closings. Image Vis. Comput. 25(4), 416–425 (2007). doi:10.1016/j.imavis.2006.07.021

    Article  Google Scholar 

  46. Tarjan, R.: Depth-first search and linear graph algorithms. SIAM J. Comput. 1(2), 146–160 (1972). doi:10.1137/0201010

    Article  MathSciNet  Google Scholar 

  47. Terajima, K., Nakada, T.: EZ-tracing: a new ready-to-use algorithm for magnetic resonance tractography. J. Neurosci. Methods 116(2), 147–155 (2002). doi:10.1016/s0165-0270(02)00039-0

    Google Scholar 

  48. Tournier, J.D., Mori, S., Leemans, A.: Diffusion tensor imaging and beyond. Magn. Reson. Med. 65(6), 1532–1556 (2011). doi:10.1002/mrm.22924

    Article  Google Scholar 

  49. Valero, S., Chanussot, J., Benediktsson, J.A., Talbot, H., Waske, B.: Advanced directional mathematical morphology for the detection of the road network in very high resolution remote sensing images. Pattern Recognit. Lett. 31(10), 1120–1127 (2010). doi:10.1016/j.patrec.2009.12.018

    Article  Google Scholar 

  50. van de Gronde, J.J., Roerdink, J.B.T.M.: Frames, the Loewner order and eigendecomposition for morphological operators on tensor fields. Pattern Recognit. Lett. (2014). doi:10.1016/j.patrec.2014.03.013

    Google Scholar 

  51. van de Gronde, J.J., Roerdink, J.B.T.M.: Group-invariant colour morphology based on frames. IEEE Trans. Image Process. 23(3), 1276–1288 (2014). doi:10.1109/tip.2014.2300816

    Article  MathSciNet  Google Scholar 

  52. Vincent, L.: Minimal path algorithms for the robust detection of linear features in gray images. In: Heijmans, H.J.A.M., Roerdink, J.B.T.M. (eds.) Mathematical Morphology and Its Applications to Image and Signal Processing, ISMM ’98, pp. 331–338. Kluwer Academic Publishers, Norwell, MA (1998)

    Google Scholar 

  53. Wilkinson, M.H.F.: Hyperconnectivity, attribute-space connectivity and path openings: theoretical relationships. In: Wilkinson, M.H.F., Roerdink, J.B.T.M. (eds.) Mathematical Morphology and Its Application to Signal and Image Processing. Lecture Notes in Computer Science, vol. 5720, Chap. 5, pp. 47–58. Springer, Berlin/Heidelberg (2009). doi:10.1007/978-3-642-03613-2_5

    Google Scholar 

Download references

Acknowledgements

The first and third author were funded by the Netherlands Organisation for Scientific Research (NWO), project no. 612.001.001. Also, we thank Remco Renken and Jelmer Kok from the NeuroImaging Center Groningen for supplying us with the diffusion MRI data (including regions of interest and tractography results), as well as for some inspiring discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jos B. T. M. Roerdink .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

van de Gronde, J.J., Lysenko, M., Roerdink, J.B.T.M. (2015). Path-Based Mathematical Morphology on Tensor Fields. In: Hotz, I., Schultz, T. (eds) Visualization and Processing of Higher Order Descriptors for Multi-Valued Data. Mathematics and Visualization. Springer, Cham. https://doi.org/10.1007/978-3-319-15090-1_6

Download citation

Publish with us

Policies and ethics