Skip to main content

Mucopolysaccharides, Water and Electrolytes of Human Fetal Organs

  • Chapter
  • First Online:
Human Fetal Growth and Development

Abstract

A group of long chin heteroglycans or heteropolysaccharides consisting of N-acetylhexosamine, hexuronic acid or hexose as repeating units, occurring in animal tissues, is termed “Mucopolysaccharide” (MPS). Some of these polysaccharides are also polyelectrolytes, behaving as polyanionic substances due to the presence of free carboxylic (--COO) and sulphate (--SO3 =) groups. Such acidic mucopolysaccharides (AMPS) mainly occur in connective tissues and universally contain acetylated hexosamine. Jeanloz [1]; termed these MPS as Glycosaminoglycans (GAG) (Fig. 8.1).

†Authors was deceased at the time of publication.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 149.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 149.00
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Jeanloz RW. Chemical structure of the polysaccharides of connective tissue (mucopolysaccharides). Bull Soc Chim Biol. Paris. 1960;42:1829–31.

    Google Scholar 

  2. Stacey M. The chemistry of mucopolysaacharides and mucoproteins. Adv Carbohydr Chem. 1946;2:161.

    Google Scholar 

  3. Stacey M, Barker SA. Carbohydrates of living tissues. London: van. Nostrand; 1962.

    Google Scholar 

  4. Tsiganos TCP, Muir H. In: Vogell HG (ed.). Connective tissue and ageing, Amsterdam: Excerpta Medica; 1973;1:132.

    Google Scholar 

  5. Hopwood JJ, Robinson HC. The structure and composition of cartilage keratin sulphate. Biochem J. 1974;141:517.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Buedecke E, Kroz W, Tittor W. Hoppe-Seyler’s. Z Physiol Chem. 1967;384:651.

    Article  Google Scholar 

  7. Rosenberg L, Hellman AK, Kleinschmit WJ. Macromolecular models of protein-polysaccharide from bovine nasal cartilage based on electron microscope studies. London: London Academic Press, Biol Chem. 1970;245:4123.

    Google Scholar 

  8. Hascall VC, Riolo REJ. Characteristics of the protein-keratan sulfate core and of keratan sulfate prepared from bovine nasal cartilage proteoglycan. J Biol Chem. 1972;247:4529.

    CAS  PubMed  Google Scholar 

  9. Grossman BJ, Dorfman A. In vitro comparison of the antithrombic action of heparin and chondroitinsulfuric acid-B. Pediatrics. 1957;20:506.

    CAS  PubMed  Google Scholar 

  10. Leoewi G, Mdyer K. The acid mucopolysaccharides of embryonic skin. Biochim Biophys Acta. 1958;27:453.

    Article  Google Scholar 

  11. Dorfman A, Schiller S. Biological structure and function, London: Academic; 1961;1. p. 328.

    Google Scholar 

  12. Stryer L. Energy transfer in proteins and polypeptides. Rad Res. 1960;(Suppl. 2):432–51.

    Google Scholar 

  13. Spiers CH. Das Wasseraufnahmevermogen von Kollagen und Leder. J Soc Leather Trades’ Chem. 1952;36:20.

    Google Scholar 

  14. Eder HA. Determination of the thiocyanate space. In: Visscher MB (ed.). Methods in medical research, Chicago: Yearbook Publishers, 1951;4:48–53.

    Google Scholar 

  15. Singh M, Bachhawat BK. Isolation and characterization of glysoaminoglycans in human brain of different age groups. J Neurochem. 1968;15:249–58.

    Article  CAS  PubMed  Google Scholar 

  16. Schiller S, Slover GA, Dorfman AJ. A method for the separation of acid mucopolysaccharides: its application to the isolation of heparin from the skin of rats. Biol Chem. 1961;236:983.

    Google Scholar 

  17. Scott JE. In: Glick D (ed.). Methods on biochemical analysis. New York: Inter Science Publishers; 1960;8:145.

    Google Scholar 

  18. Dische Z. A new specific color reaction of hexuronic acids. J Biol Chem. 1947;167:189.

    CAS  PubMed  Google Scholar 

  19. Bitter T, Muir HM. A modified uronic acid carbazole reaction. Anal Biochem. 1962;4:330–4.

    Google Scholar 

  20. Elson LA, Morgan WT. A colorimetric method for the determination of glucosamine and chondrosamine. Biochem J. 1933;27(6):1824–8.

    Google Scholar 

  21. Morgan WT, Elson LA. A colorimetric method for the determination of N-acetylglucosamine and N-acetylchrondrosamine. Biochem J. 1934;28:988.

    Google Scholar 

  22. Ludowieg J, Bewrmaman JD. A method for analysis of amino sugars: specificity and mechanism of the reaction. Carbohydr Res. 1968;8:185–92.

    Google Scholar 

  23. Dodgson KS, Price RG. A note on the determination of the ester sulphate content of sulphated polysaccharides. Biochem J. 1962;84:106.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Ghosh S, Blumenthal HJ, Davidson E, Roseman S. Glucosamine metabolism. V. Enzymatic synthesis of glucosamine 6-phosphate. J Biol Chem. 1960;235:1265–73.

    Google Scholar 

  25. Lowery OH, Rosebrough NJ, Farr AL, Randall RJ. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951;193:265.

    Google Scholar 

  26. Spiro RG. Studies on the biosynthesis of glucosamine in the intact rat. J Biol Chem. 1959;234:742–8.

    CAS  PubMed  Google Scholar 

  27. Winterburn PJ, Phelps CF. Purification and some kinetic properties of rat liver glucosamine synthetase. Biochem J. 1971;121(4):701–9.

    Google Scholar 

  28. Harwitz AL, Crystal RC. Content and synthesis of glycosaminoglycans in the developing lung. J Clin Invest. 1975;56(5):1312–8.

    Google Scholar 

  29. Kauffman SL, Burris PH, Weibal ER. The post-natal growth of the rat lung. II. Autoradiography. Anat Rec. 1974;180:63–76.

    Google Scholar 

  30. Margolis RU, Margolis RK, Chang LB, Preti C. Glycosaminoglycans of brain during development. Biochem. 1975;14(1):85–8.

    Google Scholar 

  31. Laurent TC, Barany EH, Carlsson B, Tidare E. Determination of hyaluronic acid in the microgram range. Anal Biochem. 1969;31:133–45.

    Article  CAS  PubMed  Google Scholar 

  32. Bourke RS, Tower DB. Fluid compartmentation and electrolytes of cat cerebral cortex in vitro–II sodium, potassium and chloride of mature cerebral cortex. J Neurochem. 1966;13(11):1099–117.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Niranjan Bhattacharya Dsc, MD, MS, FSOG, FICS, FACS .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Ganguly, C., Thakurata, G.G., Mukherjee, K.L., Bhattacharya, N. (2016). Mucopolysaccharides, Water and Electrolytes of Human Fetal Organs. In: Bhattacharya, N., Stubblefield, P. (eds) Human Fetal Growth and Development. Springer, Cham. https://doi.org/10.1007/978-3-319-14874-8_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-14874-8_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-14873-1

  • Online ISBN: 978-3-319-14874-8

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics