Skip to main content

Sarcopenia and Its Intervention

  • Chapter
  • First Online:
Nutrition, Exercise and Epigenetics: Ageing Interventions

Part of the book series: Healthy Ageing and Longevity ((HAL,volume 2))

Abstract

The world’s elderly population is expanding rapidly, and we are now faced with the significant challenge of maintaining or improving physical activity, independence, and quality of life in the elderly. Sarcopenia, the age-related loss of skeletal muscle mass, is characterized by a deterioration of muscle quantity and quality leading to a gradual slowing of movement, a decline in strength and power, increased risk of fall-related injury, and often, frailty. Muscle loss has been linked with several proteolytic systems, including the ubuiquitin-proteasome and lysosome-autophagy systems. Although many factors are considered to regulate age-dependent muscle loss, this gentle atrophy is not affected by factors known to enhance rapid atrophy (denervation, hindlimb suspension, etc.). In addition, defects in Akt-mammalian target of rapamycin (mTOR) and serum response factor (SRF)-dependent signaling have been found in sarcopenic muscle. Intriguingly, more recent studies indicate an apparent functional defect in autophagy-dependent signaling in sarcopenic muscle. Resistance training combined with amino acid-containing supplements is often utilized to prevent age-related muscle wasting and weakness. Treatment with ursolic acid seems to be effective as therapeutic agents for sarcopenia, because they attenuate the degenerative symptoms of cachexic muscle. Pharmacological, hormonal, and supplemental approaches have been tried to attenuate sarcopenia, but did not obtain outstanding results. In this review, we summarize the current understanding of the adaptation of many regulators in sarcopenia and more recent therapeutic strategies (myostatin inhibition, supplementation with ghrelin or ursolic acid, etc.) for counteracting sarcopenia.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

ACE:

angiotensin-converting enzyme

ActRIIB:

activin receptor IIB

ALK:

activin receptor-like kinase

Atg:

autophagy-related genes

atrogin-1:

atrophy gene-1

BCAA:

branched chain amino acid

CR:

caloric restriction

DHEA:

dehydroepiandrosterone

DMD:

Duchenne muscular dystrophy

eIF:

eukaryotic initiation factor

4E-BP:

eIF 4E binding protein

FOXO:

forkhead box O

GH:

growth hormone

GSK:

glycogen synthase kinase

IGF-I:

insulin-like growth factor-I

IL:

interleukin

JAK:

Janus kinase

KO:

knockout

MRTF:

myocardin-related transcription factor

mTOR:

mammalian target of rapamycin

mTORC:

mTOR signaling complex

MuRF:

muscle ring-finger protein

NF-ÎşB:

nuclear factor-kappaB

NMJ:

neuromuscular junction

PGC-1α:

peroxisome proliferator-activated receptor γ coactivator 1α

PI3-K:

phosphatidylinositol 3-kinase

p70S6K:

p70 ribosomal protein S6 kinase

RDA:

recommended dietary allowance

Rheb:

Ras homolog enriched in brain

ROS:

reactive oxidative species

SRF:

serum response factor

STARS:

striated muscle activators of Rho signaling

STAT:

signal transducer and activator of transcription

TNF-α:

tumor necrosis factor-α

TSC:

tuberous sclerosis complex

UPS:

ubiquitin-proteasome system

References

  1. von Haehling S, Morley JE, Anker SD (2010) An overview of sarcopenia: facts and numbers on prevalence and clinical impact. J Cachexia Sarcopenia Muscle 1:129–133

    Article  Google Scholar 

  2. Sakuma K, Yamaguchi A (2010) Molecular mechanisms in aging and current strategies to counteract sarcopenia. Curr Aging Sci 3:90–101

    Article  CAS  PubMed  Google Scholar 

  3. Sakuma K, Yamaguchi A (2011) Sarcopenia: molecular mechanisms and current therapeutic strategy. In: Perloft JW, Wong AH (eds) Cell aging. Nova Science Publisher, New York, pp 93–152

    Google Scholar 

  4. McKay BR, Ogborn DI, Bellamy LM, Tarnopolsky MA, Parise G (2012) Myostatin is associated with age-related human muscle stem cell dysfunction. FASEB J 25:2509–2521

    Article  Google Scholar 

  5. Wohlgemuth SE, Seo AY, Marzetti E, Lees HA, Leeuwenburgh C (2010) Skeletal muscle autophagy and apoptosis during aging: effects of calorie restriction and life-long exercise. Exp Gerontol 45:138–148

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  6. Zhou J, Freeman TA, Ahmad F, Shang X, Mangano E, Gao E, Farber J, Wang Y, Ma XL, Woodgett J, Vagnozzi RJ, Lai H, Force T (2013) GSK-3α is a central regulator of age-related pathologies in mice. J Clin Invest 123:1821–1832

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  7. Sakuma K, Aoi W, Yamaguchi A (2015) Current understanding of sarcopenia: possible candidates modulating muscle mass. Pflügers Arch 467:213–229

    Google Scholar 

  8. Parkington JD, LeBrasseur NK, Siebert AP, Fielding RA (2004) Contraction-mediated mTOR, p70S6K, and ERK1/2 phosphorylation in aged skeletal muscle. J Appl Physiol 97:243–248

    Article  CAS  PubMed  Google Scholar 

  9. Kimball SR, O’Malley JP, Anthony JC, Crozier SJ, Jefferson LS (2004) Assessment of biomarkers of protein anabolism in skeletal muscle during the life span of the rat: sarcopenia despite elevated protein synthesis. Am J Physiol Endocrinol Metab 287:E772–E780

    Article  CAS  PubMed  Google Scholar 

  10. Léger B, Derave W, De Bock K, Hespel P, Russell AP (2008) Human sarcopenia reveals an increase in SOCS-3 and myostatin and a reduced efficiency of Akt phosphorylation. Rejuvenation Res 11:163–175

    Article  PubMed  Google Scholar 

  11. Rahnert JA, Luo Q, Balog EM, Sokoloff AJ, Burkholder TJ (2011) Changes in growth-related kinases in head, neck and limb muscles with age. Exp Gerontol 46:282–291

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  12. Fry CS, Drummond MJ, Glynn EL, Dickinson JM, Gundermann DM, Timmerman KL, Walker DK, Dhanani S, Volpi E, Rasmussen BB (2011) Aging impairs contraction-induced human skeletal muscle mTORC1 signaling and protein synthesis. Skeletal Muscle 1:11

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  13. Mokalled MH, Johnson AN, Creemers EE, Olson EN (2012) MASTR directs MyoD-dependent satellite cell differentiation during skeletal muscle regeneration. Genes Dev 26:190–202

    Google Scholar 

  14. Guerci A, Lahoute C, Hébrard S, Collard L, Graindorge D, Favier M, Cagnard N, Batonnet-Pichon S, Précigout G, Garcia L, Tuil D, Daegelen D, Sotiropoulos A (2012) Srf-dependent paracrine signals produced by myofibers control satellite cell-mediated skeletal muscle hypertrophy. Cell Metab 15:25–37

    Article  CAS  PubMed  Google Scholar 

  15. Lamon S, Wallace MA, Léger B, Russell AP (2009) Regulation of STARS and its downstream targets suggest a novel pathway involved in human skeletal muscle hypertrophy and atrophy. J Physiol 587:1795–1803

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  16. Sakuma K, Akiho M, Nakashima H, Akima H, Yasuhara M (2008) Age-related reductions in expression of serum response factor and myocardin-related transcription factor a in mouse skeletal muscles. Biochim Biophys Acta Mol Basis Dis 1782:453–461

    Article  CAS  Google Scholar 

  17. Bodine SC, Baehr LM (2014) Skeletal muscle atrophy and the E3 ubiquitin ligases, MuRF1 and MAFbx/atrogin-1. Am J Physiol Endocrinol Metab 5 Aug 2014. pii: ajpendo.00204.2014. [Epub ahead of print]

    Google Scholar 

  18. Edström E, Altun M, Hägglund M, Ulfhake B (2006) Atrogin-1/MAFbx and MuRF1 are downregulated in ageing-related loss of skeletal muscle. J Gerontol Series A Biol Sci Med Sci 61:663–674

    Article  Google Scholar 

  19. Sandri M, Barberi L, Bijlsma AY, Blaauw B, Dyar KA, Milan G, Mammucari C, Meskers CG, Pallafacchina G, Paoli A, Pion D, Roceri M, Romanello V, Serrano AL, Toniolo L, Larsson L, Maier AB, Muñoz-Cánoves P, Musarò A, Pende M, Reggiani C, Rizzuto R, Schiaffino S (2013) Signaling pathways regulating muscle mass in ageing skeletal muscle. The role of IGF-1-Akt-mTOR-FoxO pathway. Biogerontology 14:303–323

    Article  CAS  PubMed  Google Scholar 

  20. Hwee DT, Baehr LM, Philp A, Baar K, Bodine SC (2014) Maintenance of muscle mass and load-induced growth in Muscle RING Finger 1 null mice with age. Aging Cell 13:92–101

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  21. Neel BA, Lin Y, Pessin JE (2013) Skeletal muscle autophagy: a new metabolic regulator. Trends Endocrinol Metabol 24:635–643

    Article  CAS  Google Scholar 

  22. Demontis F, Perrimon N (2010) FOXO/4E-BP signaling in Drosophila muscles regulates organism-wide proteostasis during aging. Cell 143:813–825

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  23. McMullen CA, Ferry AL, Gamboa JL, Andrade FH, Dupont-Versteegden EE (2009) Age-related changes of cell death pathways in rat extraocular muscle. Exp Gerontol 44:420–425

    Article  CAS  PubMed  Google Scholar 

  24. Wenz T, Rossi SG, Rotundo RL, Spiegelman BM, Moraes CT (2009) Increased muscle PGC-1alpha expression protects from sarcopenia and metabolic disease during aging. Proc Natl Acad Sci USA 106:20405–20410

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  25. De Palma C, Morisi F, Cheli S, Pambianco S, Cappello V, Vezzoli M, Rovere-Querini P, Moggio M, Ripolone M, Francolini M, Sandri M, Clementi E (2012) Autophagy as a new therapeutic target in Duchenne muscular dystrophy. Cell Death Dis 3:e418

    Article  PubMed Central  PubMed  Google Scholar 

  26. Vainshtein A, Grumati P, Sandri M, Bonaldo P (2014) Sakeletal muscle, autophagy, and physical activity: the ménage á trois of metabolic regulation in health and disease. J Mol Med 92:127–137

    Article  CAS  PubMed  Google Scholar 

  27. Sakuma K, Yamaguchi A (2012) Sarcopenia and cachexia: the adaptations of negative regulators of skeletal muscle mass. J Cachexia Sarcopenia Muscle 3:77–94

    Article  PubMed Central  PubMed  Google Scholar 

  28. Carlson ME, Hsu M, Conboy IM (2008) Imbalance between pSmad3 and Notch induces CDK inhibitors is old muscle stem cells. Nature 454:528–532

    Article  CAS  PubMed  Google Scholar 

  29. Fiatarone MA, O’Neil EF, Ryan ND, Clements KM, Solares GR, Nelson ME, Roberts SB, Kehayias JJ, Lipsitz LA, Evans WJ (1994) Exercise training and nutritional supplementation for physical frailty in very elderly people. N Engl J Med 330:1769–1775

    Article  CAS  PubMed  Google Scholar 

  30. McCartney N, Hicks AL, Martin J, Webber CE (1996) A longituidinal trial of weight training in the elderly: continued improvements in year 2. J Gerontol A Biol Sci Med Sci 51:B425–B433

    Article  CAS  PubMed  Google Scholar 

  31. Sakuma K, Aoi W, Yamaguchi A (2014) The intriguing regulators of muscle mass in sarcopenia and muscular dystrophy. Front Aging Neurosci 6:230

    Article  PubMed Central  PubMed  Google Scholar 

  32. Mayhew DL, Kim JS, Cross JM, Bamman MM (2009) Translational signaling responses preceding resistance training-mediated myofibers hypertrophy in young and old humans. J Appl Physiol 107:1655–1662

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  33. Kosek DJ, Kim JS, Petrella JK, Cross JM, Bamman MM (2006) Efficacy of 3 day/wk resistance training on myofiber hypertrophy and myogenic mechanisms in young vs. older adults. J Appl Physiol 101:531–544

    Article  CAS  PubMed  Google Scholar 

  34. Timmerman KL, Volpi E (2008) Amino acid metabolism and regulatory effects in aging. Curr Opin Clin Nutr Metab Care 11:45–49

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  35. Walker DK, Dickinson JM, Timmerman KL, Drummond MJ, Reidy PT, Fry CS, Gundermann DM, Rasmussen BB (2011) Exercise, amino acids, and aging in the control of human muscle protein synthesis. Med Sci Sports Exerc 43:2249–2258

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  36. Esmarck B, Andersen JL, Olsen S, Richter EA, Mizuno M, Kjaer M (2005) Timing of postexercise protein intake is important for muscle hypertrophy with resistance training in elderly humans. J Physiol 567:301–311

    Article  Google Scholar 

  37. Drummond MJ, Dreyer HC, Pennings B, Fry CS, Dhanani S, Dillon EL, Sheffield-Moore M, Volpi E, Rasmussen BB (2008) Skeletal muscle protein anabolic response to resistance exercise and essential amino acids is delayed with aging. J Appl Physiol 104:1452–1461

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  38. Walrand S, Short KR, Bigelow ML, Sweatt AJ, Hutson SM, Nair KS (2008) Functional impact of high protein intake on healthy elderly people. Am J Physiol Endocrinol Metab 295:E921–E928

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  39. Godard MP, Williamson DL, Trappe SW (2002) Oral amino-acid provision does not affect muscle strength or size gains in older men. Med Sci Sports Exerc 34:1126–1131

    Google Scholar 

  40. Nicastro H, Artioli GG, Dos Santos Costa A, Sollis MY, Da Luz CR, Blachier F Lancha AH Jr (2011) An overview of the therapeutic effects of leucine supplementation on skeletal muscle under atrophic conditions. Amino Acids 40:287–300

    Google Scholar 

  41. Wang ZH, Hsu CC, Huang CN, Yin MC (2009) Anti-glycative effects of oleanolic acid and ursolic acid in kidney of diabetic mice. Eur J Pharmacol 628:255–260

    Article  PubMed  Google Scholar 

  42. Kunkel SD, Suneja M, Ebert SM, Bongers KS, Fox DK, Malmberg SE, Alipour F, Shields RK, Adams CM (2011) mRNA expression signatures of human skeletal muscle atrophy identify a natural compound that increases muscle mass. Cell Metab 13:627–638

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  43. Bonetto A, Penna F, Muscaritoli M, Minero VG, Fanelli FR, Baccino FM, Costelli P (2009) Are antioxidants useful for treating skeletal muscle atrophy? Free Radic Biol Med 47:906–916

    Article  CAS  PubMed  Google Scholar 

  44. Cerullo F, Gambassi G, Cesari M (2012) Rationale for antioxidant supplementation in sarcopenia. J Aging Res 2012:Article ID 316943, p 8

    Google Scholar 

  45. Morley J.E, Abbatecola A.M, Argiles JM, Baracos V, Bauer J, Bhasin S, Cederholm T, Coats AJ, Cummings SR, Evans WJ, Fearon K, Ferrucci L, Fielding RA, Guralnik JM, Harris,T.B, Inui A, Kalantar-Zadeh K, Kirwan BA, Mantovani G, Muscaritoli M, Newman AB, Rossi-Fanelli F, Rosano GM, Roubenoff R, Schambelan M, Sokol GH, Storer TW, Vellas B, von Haehling S, Yeh SS, Anker SD; Society on Sarcopenia, Cachexia and Wasting Disorders Trialist Workshop (2011) Sarcopenia with limited mobility: an international consensus. J Am Med Dir Assoc 12:403–409

    Google Scholar 

  46. Bhasin S, Calof O, Storer TW, Lee ML, Mazer NA, Jasuja R, Montori VM, Gao W, Dalton JT (2006) Drug insight: testosterone and selective androgen receptor modulators as anabolic therapies for physical dysfunction in chronic illness and ageing. Nature Clin Pract Endocrinol Metab 2:146–159

    Article  CAS  Google Scholar 

  47. Sinha-Hikim I, Cornford M, Gaytan H, Lee ML, Bhasin S (2006) Effects of testosterone supplementation on skeletal muscle fiber hypertrophy and satellite cells in community-dwelling older men. J Clin Endocrinol Metab 91:3024–3033

    Article  CAS  PubMed  Google Scholar 

  48. Nagaya N, Itoh T, Murakami S, Oya H, Uematsu M, Miyatake K, Kangawa K (2005) Treatment of cachexia with ghrelin in patients with COPD. Chest 128:1187–1193

    Article  CAS  PubMed  Google Scholar 

  49. Nagaya N, Moriya J, Yasumura Y, Uematsu M, Ono F, Shimizu W, Ueno K, Kitakaze M, Miyatake K, Kangawa K (2004) Effects of ghrelin administration on left ventricular function, exercise capacity, and muscle wasting in patients with chronic heart failure. Circulation 110:3674–3679

    Article  CAS  PubMed  Google Scholar 

  50. Bach MA, Rockwood K, Zetterberg C, Thamsborg G, Hébert R, Devogelaer JP, Christiansen JS, Rizzoli R, Ochsner JL, Beisaw N, Gluck O, Yu L, Schwab T, Farrington J, Taylor AM, Ng J, Fuh V, MK 0677 Hip fracture study group (2004) The effects of MK-0677, an oral growth hormone secretagogue, in patients with hip fracture. J Am Geriatr Soc 52:516–52

    Google Scholar 

  51. Nass R, Gaylinn BD, Thorner MO (2011) The ghrelin axis in disease: potential therapeutic indications. Mol Cell Endocrinol 340:106–110

    Google Scholar 

  52. Lebrasseur NK, SchelhornTM, Bernardo BL, Cosgrove PG, Loria P, Brown TA (2009) Myostatin inhibition enhances the effects on performance and metabolic outcomes in aged mice. J Gerontol A Biol Sci Med Sci 64:940–948

    Google Scholar 

  53. Murphy KT, Koopman R, Naim T, Léger B, Trieu J, Ibebunjo C, Lynch GS (2010) Antibody-directed myostatin inhibition in 21-mo-old mice reveals novel roles for myostatin signaling in skeletal muscle structure and function. FASEB J 24:4433–4442

    Article  CAS  PubMed  Google Scholar 

  54. Sumukadas D, Witham MD, Struthers AD, Mcmurdo MET (2007) Effect of perindopril on physical function in elderly people with functional impairment: a randomized controlled trial. CMAJ 177:867–874

    Article  PubMed Central  PubMed  Google Scholar 

  55. Bunout D, Barrera G, De La Maza MP, Leiva L, Backhouse C, Hirsch S (2009) Effects of enalapril or nifedipine on muscle strength or functional capacity in elderly subjects. A double blind trial. J Renin Angiotensin Aldosterone Syst 10:77–84

    Article  CAS  PubMed  Google Scholar 

  56. Snijder MB, Van Schoor NM, Pluijm SM, Van Dam RM, Visser M, Lips P (2006) Vitamin D status in relation to one-year risk of recurrent falling in older men and women. J Clin Endocrinol Metab 91:2980–2985

    Article  CAS  PubMed  Google Scholar 

  57. Annweiler C, Schott AM, Berrut G, Fantino B, Beauchet O (2009) Vitamin D-related changes in physical performance: a systemic review. J Nutr Health Aging 13:893–898

    Article  CAS  PubMed  Google Scholar 

  58. Sanders KM, Stuart AL, Williamson EJ, Simpson JA, Kotowicz MA, Young D, Nicholson GC (2010) Annual high-dose oral vitamin D and falls and fractures in older women: a randomized controlled trial. JAMA 291:1815–1822

    Article  Google Scholar 

  59. Cesari M, Incalzi RA, Zamboni V, Pahor M (2011) Vitamin D hormone: a multitude of actions potentially influencing the physical function decline in older persons. Geriatr Gerontol Int 11:133–142

    Article  PubMed  Google Scholar 

  60. Garcia LA, King KK, Ferrini MG, Norris KC, Artaza JN (2011) 1,25(OH)2vitamin D3 stimulates myogenic differentiation by inhibiting cell proliferation and modulating the expression of promyogenic growth factors and myostatin in C2C12 skeletal muscle cells. Endocrinology 152:2976–2986

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  61. Hancock CR, Han DH, Higashida K, Kim SH, Holloszy JO (2011) Does calorie restriction induce mitochondrial biogenesis? FASEB J 25:785–791

    Google Scholar 

  62. Lanza IR, Zabielski P, Klaus KA, Morse DM, Heppelmann CJ, Bergen HR 3rd, Dasari S, Walrand S, Short KR, Johnson ML, Robinson MM, Schimke JM, Jakaitis DR, Asmann YW, Sun Z, Nair KS (2012) Chronic caloric restriction preserves mitochondrial function in senescence without increasing mitochondrial biogenesis. Cell Metab 16:777–788

    Google Scholar 

  63. Dirks AJ, Leeuwenburgh C (2004) Aging and lifelong calorie restriction result in adaptations of skeletal muscle apoptosis repressor, apoptosis-inducing factor, X-linked inhibitor of apoptosis, caspase-3, and caspase-12. Free Radic Biol Med 36:27–39

    Article  CAS  PubMed  Google Scholar 

  64. Gouspillou G, Hepple RT (2013) Facts and controversies in our understanding of how caloric restriction impacts the mitochondrion. Biochem Pharmacol 48:1075–1084

    CAS  Google Scholar 

  65. Baker DJ, Betik AC, Krause DJ, Hepple RT (2006) No decline in skeletal muscle oxidative capacity with aging in long-term calorically restricted rats: effects are independent of mitochondrial DNA integrity. J Gerontol A Biol Sci Med Sci 61:675–684

    Article  PubMed  Google Scholar 

  66. Chan MC, Arany Z (2014) The many roles of PGC-1α in muscle–recent developments. Metabolism 63:441–451

    Google Scholar 

  67. Valdez G, Tapia JC, Kang H, Clemenson GD Jr, Gage FH, Lichtman JW, Sanes JR (2010) Attenuation of age-related changes in mouse neuromuscular synapses by caloric restriction and exercise. Proc Natl Acad Sci USA 107:14863–14868

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  68. Mattison JA, Roth GS, Beasley TM, Tilmont EM, Handy AM, Herbert RL, Longo DL, Allison DB, Young JE, Bryant M, Ward WF, Qi W, Ingram DK, de Cabo R (2012) Impact of caloric restriction on health and survival in rhesus monkeys from the NIA study. Nature 489:318–322

    Article  CAS  PubMed  Google Scholar 

  69. McKiernan SH, Colman RJ, Lopez M, Beasley TM, Aiken JM, Anderson RM, Weindruch R (2011) Caloric restrictin delays aging-induced cellular phenotypes in rhesus monkey skeletal muscle. Exp Gerontol 46:23–29

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  70. McKiernan SH, Colman RJ, Aiken E, Evans TD, Beasley TM, Aiken JM, Weindruch R, Anderson RM (2012) Cellular adaptation contributes to calorie restriction-induced preservation of skeletal muscle in aged rhesus monkeys. Exp Gerontol 47:229–236

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  71. Cerletti M, Jang YC, Finley LWS, Haigis MC, Wagers AJ (2012) Short-term calorie restriction enhances skeletal muscle stem cell function. Cell Stem Cell 10:515–519

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  72. Jang YC, Liu Y, Hayworth CR, Bhattacharya A, Lustgarten MS, Muller FL, Chaudhuri A, Qi W, Li Y, Huang J-Y, Verdin E, Richardson A, Van Remmen H (2012) Dietary restriction attenuates age-associated muscle atrophy by lowering oxidative stress in mice even in complete absence of CuZnSOD. Aging Cell 11:770–782

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  73. Mercken EM, Crosby SD, Lamming DW, JeBailey L, Krzysik-Walker S, Villareal DT, Capri M, Franceschi C, Zhang Y, Becker K, Sabatini DM, de Cabo R, Fontana L (2012) Calorie restriction in humans inhibits the PI3 K/AKT pathway and induces a younger transcription profile. Aging Cell 12:645–651

    Article  Google Scholar 

  74. Mercken EM, Majounie E, Ding J, Guo R, Kim J, Bernier M, Mattison J, Cookson MR, Gorospe M, de Cabo R, Abdelmohsen K (2013) Age-associated miRNA alterations in skeletal muscle from rhesus monkeys reversed by caloric restriction. Aging 5:692–703

    PubMed Central  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by a research Grant-in-Aid for Scientific Research C (No. 26350815) from the Ministry of Education, Culture, Sports, Science and Technology of Japan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kunihiro Sakuma .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Sakuma, K., Yamaguchi, A. (2015). Sarcopenia and Its Intervention. In: Yu, B. (eds) Nutrition, Exercise and Epigenetics: Ageing Interventions. Healthy Ageing and Longevity, vol 2. Springer, Cham. https://doi.org/10.1007/978-3-319-14830-4_7

Download citation

Publish with us

Policies and ethics