Skip to main content

Tissue Characteristics and Development in Myxozoa

  • Chapter
  • First Online:
Myxozoan Evolution, Ecology and Development

Abstract

For most of the time that they have been recognised, myxozoans were viewed to lack any tissue-level of development. However, the discovery of malacosporean stages in freshwater bryozoans revealed recognisable tissues in the form of epithelial sheets and musculature. In this chapter we compare and contrast myxozoan tissues with those of other metazoans and review the scattered literature on myxozoan development in order to explore differences and similarities to normal development in cnidarians and bilaterians. Malacosporean trophic stages possess a bona fide epithelium (including a basal lamina). Close inspection, however, demonstrates that some epithelial features are found in all myxozoan spores (cell-junctions) and even in syncytial plasmodial stages of myxosporeans (polarity, directed transport). Vestiges of tissue-level traits of their free-living ancestors can therefore be observed in all myxozoans. Resorptive and secretory tissues in myxozoans and muscle tissues in malacosporeans are evaluated with respect to typical cnidarian or bilaterian tissues. Elements of neurotransmission pathways identified in a transcriptomic survey suggest that muscle activity in myxoworms is coordinated by nervous signal transduction. Nerve cells may therefore be highly reduced and have not been recognised in structural investigations so far. Gametogenesis and embryogenesis in myxozoans have clearly been highly modified but remain poorly understood. Outstanding issues that remain to be resolved include the identification and formation of blastula and gastrula stages and the orientation of the ectoderm and endoderm (gastrodermis) of myxozoans.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alexandrova O, Schade M, Böttger A, David CN (2005) Oogenesis in Hydra: nurse cells transfer cytoplasm directly to the growing oocyte. Dev Biol 281:91–101. doi:10.1016/j.ydbio.2005.02.015

    Article  CAS  PubMed  Google Scholar 

  • Alvarez-Pellitero P, Molnár K, Sitjà-Bobadilla A, Székely C (2002) Comparative ultrastructure of the actinosporean stages of Myxobolus bramae and M. pseudodispar (Myxozoa). Parasitol Res 88:198–207. doi:10.1007/s00436-001-0527-x

    Article  CAS  PubMed  Google Scholar 

  • Azevedo C, Lom J, Corral L (1989) Ultrastructural aspects of Myxidium giardi (Myxozoa, Myxosporea), parasite of the European eel Anguilla anguilla. Dis Aquat Org 6:55–61

    Article  Google Scholar 

  • Azevedo C, Samuel N, Saveia AP, Delgado F, Casal G (2011) Light and electron microscopical data on the spores of Thelohanellus rhabdalestus n. sp. (Myxozoa: Myxosporea), a parasite of a freshwater fish from the Kwanza River, Angola. Syst Parasitol 78:19–25. doi:10.1007/s11230-010-9273-8

    Article  PubMed  Google Scholar 

  • Azevedo C, Clemente S, Casal G, Matos P, Olivera E, Al-Guraishy S, Matos E (2012) Light and ultrastructural analysis of Myxobolus insignis (Myxozoa), infecting the Amazonian fish Semaprochiloduss insignis (Prochilodontidae). Zootaxa 3182:51–56

    Google Scholar 

  • Azevedo C, Clemente SDS, Casal G (2013) Ultrastructure of the plasmodial development of Myxobolus insignis (Myxozoa), infecting the Amazonian fish Semaprochilodus insignis (Prochilodontidae). Acta Protozool 52:91–97. doi:10.4467/16890027AP.13.009.1088

    Google Scholar 

  • Bloemendal S, Kück U (2013) Cell-to-cell communication in plants, animals, and fungi: a comparative review. Naturwissenschaften 100:3–19. doi:10.1007/s00114-012-0988-z

    Article  CAS  PubMed  Google Scholar 

  • Canning EU, Okamura B, Curry A (1996) Development of a myxozoan parasite Tetracapsula bryozoides gen. n. et sp. n. in Cristatella mucedo (Bryozoa: Phylactolaemata). Folia Parasitol (Praha) 43:259–261

    Google Scholar 

  • Canning EU, Curry A, Anderson CL, Okamura B (1999) Ultrastructure of Myxidium trachinorum sp. nov. from the gallbladder of the lesser weever fish Echiichthys vipera. Parasitol Res 85:910–919

    Article  CAS  PubMed  Google Scholar 

  • Canning EU, Curry A, Feist SW, Longshaw M, Okamura B (2000) A new class and order of myxozoans to accommodate parasites of bryozoans with ultrastructural observations on Tetracapsula bryosalmonae (PKX organism). J Eukaryot Microbiol 47:456–468

    Article  CAS  PubMed  Google Scholar 

  • Canning EU, Tops S, Curry A, Wood TS, Okamura B (2002) Ecology, development and pathogenicity of Buddenbrockia plumatellae Schröder, 1910 (Myxozoa, Malacosporea) (syn. Tetracapsula bryozoides) and establishment of Tetracapsuloides n. gen. for Tetracapsula bryosalmonae. J Euk Microbiol 49:280–295

    Article  PubMed  Google Scholar 

  • Canning EU, Curry A, Hill SLL, Okamura B (2007) Ultrastructure of Buddenbrockia allmani n. sp. (Myxozoa, Malacosporea), a parasite of Lophopus crystallinus (Bryozoa, Phylactolaemata). J Eukaryot Microbiol 54:247–262

    Article  PubMed  Google Scholar 

  • Canning EU, Curry A, Okamura B (2008) Early development of the myxozoan Buddenbrockia plumatellae in the bryozoans Hyalinella punctata and Plumatella fungosa, with comments on taxonomy and systematics of the Myxozoa. Folia Parasitol (Praha) 45:241–255

    Article  Google Scholar 

  • Casal G, Matos E, Azevedo C (2003) Light and electron microscopic study of the myxosporean, Henneguya friderici n. sp. from the Amazonian teleostean fish, Leporinus friderici. Parasitology 126:313–319. doi:10.1017/S0031182003002944

    Article  CAS  PubMed  Google Scholar 

  • Casal G, Garcia P, Matos P, Monteiro E, Matos E, Azevedo C (2009) Fine structure of Chloromyxum menticirrhi n. sp. (Myxozoa) infecting the urinary bladder of the marine teleost Menticirrhus americanus (Sciaenidae) in Southern Brazil. Eur J Protistol 45:139–146. doi:10.1016/j.ejop.2008.09.002

    Article  PubMed  Google Scholar 

  • Cereijido M, Contreras RG, Shoshani L (2004) Cell adhesion, polarity, and epithelia in the dawn of metazoans. Physiol Rev 84:1229–1262

    Article  CAS  PubMed  Google Scholar 

  • Cuadrado M, Marques A, Diamant A, Sitjà-Bobadilla A, Palenzuela O, Alvarez-Pellitero P, Padrós F, Crespo S (2008) Ultrastructure of Enteromyxum leei (Diamant, Lom, & Dykova, 1994) (Myxozoa), an enteric parasite infecting gilthead sea bream (Sparus aurata) and Sharpsnout sea bream (Diplodus puntazzo). J Eukaryot Microbiol 55:178–184. doi:10.1111/j.1550-7408.2008.325.x

    Article  PubMed  Google Scholar 

  • Dalton J, Skelly P, Halton D (2004) Role of the tegument and gut in nutrient uptake by parasitic platyhelminths. Can J Zool 82:211–232

    Google Scholar 

  • Davis DM, Sowinski S (2008) Membrane nanotubes: dynamic long-distance connections between animal cells. Nat Rev Mol Cell Biol 9:431–436. doi:10.1038/nrm2399

    Article  CAS  PubMed  Google Scholar 

  • De Cuevas M, Lilly MA, Spradling AC (1997) Germline cyst formation in Drosophila. Annu Rev Genet 31:405–428. doi:10.1146/annurev.genet.31.1.405

    Article  PubMed  Google Scholar 

  • Desportes-Livage I, Nicolas G (1990) The plasma membrane of myxosporidian valve cells: freeze fracture data. J Protozool 37:243–249

    Article  CAS  PubMed  Google Scholar 

  • Desser SS, Molnar K, Weller I (1983) Ultrastructure of sporogenesis of Thelohanellus nikolsii Akhmerov, 1955 (Myxozoa: Myxosporea) from the common carp, Cyprinus carpio. J Parasitol 69:504–518

    Article  Google Scholar 

  • El-Matbouli M, Hoffmann RW, Mandok C (1995) Light and electron microscopic observations on the route of the triactinomyxon-sporoplasm of Myxobolus cerebralis from epidermis into rainbow trout cartilage. J Fish Biol 46:919–935

    Google Scholar 

  • El-Matbouli M, Hoffmann RW (1998) Light and electron microscopic studies on the chronological development of Myxobolus cerebralis to the actinosporean stage in Tubifex tubifex. Int J Parasitol 28:195–217

    Article  CAS  PubMed  Google Scholar 

  • Extavour CG, Akam M (2003) Mechanisms of germ cell specification across metazoans: epigenesis and preformation. Development 130:5869–5874

    Article  CAS  PubMed  Google Scholar 

  • Extavour CG, Pang K, Matus DQ, Martindale MQ (2005) Vasa and nanos expression patterns in a sea anemone and the evolution of bilaterian germ cell specification mechanisms. Evol Dev 7:201–215. doi:10.1111/j.1525-142X.2005.05023.x

    Article  CAS  PubMed  Google Scholar 

  • Fawcett D (1961) Intercellular bridges. Exp Cell Res Suppl 8:174–187

    Article  Google Scholar 

  • Fawcett DW, Ito S, Slautterback D (1959) The occurrence of intercellular bridges in groups of cells exhibiting synchronous differentiation. J Biophys Biochem Cytol 5:453–460

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Feist SW (1995) Ultrastructural aspects of Myxidium gadi (Georgévitch, 1916) (Myxozoa: Myxosporea). Eur J Protistol 31:309–317. doi:10.1016/S0932-4739(11)80095-7

    Article  Google Scholar 

  • Feist SW (1997) Pathogenicity of renal myxosporeans of fish. Bull Eur Assoc Fish Pathol 17:209–214

    Google Scholar 

  • Feist SW, Longshaw M (2006) Phylum Myxozoa. In: Woo PTK (ed) Fish diseases and disorders. CABI, Wallingford, pp 230–296

    Google Scholar 

  • Fiala I, Bartosová P (2010) History of myxozoan character evolution on the basis of rDNA and EF-2 data. BMC Evol Biol 10:228. doi:10.1186/1471-2148-10-228

    Article  PubMed Central  PubMed  Google Scholar 

  • Green CR, Bergquist PR (1982) Phylogenetic relationships within the invertebrata in relation to the structure of septate junctions and the development of “occluding” junctional types. J Cell Sci 53:279–305

    Google Scholar 

  • Green CR, Flower NE (1980) Two new septate junctions in the phylum Coelenterata. J Cell Sci 42:43–59

    CAS  PubMed  Google Scholar 

  • Gruhl A, Okamura B (2012) Development and myogenesis of the vermiform Buddenbrockia (Myxozoa) and implications for cnidarian body plan evolution. EvoDevo 3:10. doi:10.1186/2041-9139-3-10

    Article  PubMed Central  PubMed  Google Scholar 

  • Hallett SL, Lester RJ (1999) Actinosporeans (Myxozoa) with four developing spores within a pansporocyst: Tetraspora discoidea n.g. n.sp. and Tetraspora rotundum n.sp. Int J Parasitol 29:419–427

    Article  CAS  PubMed  Google Scholar 

  • Hallett SL, O’Donoghue PJ, Lester RJG (1998) Structure and development of a marine actinosporean, Sphaeractinomyxon ersei n. sp. (Myxozoa). J Eukaryot Microbiol 45:142–150. doi:10.1111/j.1550-7408.1998.tb05082.x

    Article  Google Scholar 

  • Halton DW (1997) Nutritional adaptations to parasitism within the Platyhelminthes. Int J Parasitol 27:693–704

    Article  CAS  PubMed  Google Scholar 

  • Hartikainen H, Fontes I, Okamura B (2013) Parasitism and phenotypic change in colonial hosts. Parasitology 140:1403–1412. doi:10.1017/S0031182013000899

    Article  PubMed  Google Scholar 

  • Hartikainen H, Gruhl A, Okamura B (2014) Diversification and repeated morphological loss in endoparasitic cnidarians (Myxozoa: Malacosporea). Mol Phylogenet Evol 76:261–269. doi:10.1016/j.ympev.2014.03.010

    Article  PubMed  Google Scholar 

  • Hejnol A, Martindale MQ (2008) Acoel development supports a simple planula-like urbilaterian. Philos Trans R Soc B Biol Sci 363:1493–1501

    Article  Google Scholar 

  • Helke K, Poynton S (2005) Myxidium mackei (Myxosporea) in Indo-Gangetic flap-shelled turtles Lissemys punctata andersonii: parasite-host interaction and ultrastructure. Dis Aquat Org 63:215–230

    Article  CAS  PubMed  Google Scholar 

  • Hynes RO (2012) The evolution of metazoan extracellular matrix. J Cell Biol 196:671–679. doi:10.1083/jcb.201109041

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Juliano R (2002) Signal transduction by cell adhesion receptors and the cytoskeleton: functions of integrins, cadherins, selectins, and immunoglobulin-superfamily members. Annu Rev Pharmacol Toxicol 42:283–323

    Article  CAS  PubMed  Google Scholar 

  • Lom J (2004) Morphology and ultrastructure of Sphaeromyxa noblei sp. n. (Myxozoa), parasite of Heteroclinus whiteleggii (Pisces) from Australian New South Wales coast. Folia Parasitol (Praha) 51:19–26

    Article  Google Scholar 

  • Lom J, Dyková I (1992) Fine structure of Triactinomyxon early stages and sporogony: myxosporean and actinosporean features compared. J Eukaryot Microbiol 39:16–27

    Google Scholar 

  • Lom J, Dyková I (1996) Notes on the ultrastructure of two myxosporean (Myxozoa) species, Zschokkella pleomorpha and Ortholinea fluviatilis. Folia Parasitol (Praha) 43:189–202

    Google Scholar 

  • Lom J, Yokoyama H, Dykova I (1997) Comparative ultrastructure of Aurantiactinomyxon and Raabeia, actinosporean stages of myxozoan life cycles. Archiv für Protistenkunde 148:173–189

    Google Scholar 

  • Mackie GO (2004) Epithelial conduction: recent findings, old questions, and where do we go from here? Hydrobiologia 530–531:73–80

    Article  Google Scholar 

  • Magie CR, Martindale MQ (2008) Cell-cell adhesion in the Cnidaria: insights into the evolution of tissue morphogenesis. Biol Bull 214:218–232

    Article  PubMed  Google Scholar 

  • Martindale MQ, Pang K, Finnerty JR (2004) Investigating the origins of triploblasty: “mesodermal” gene expression in a diploblastic animal, the sea anemone Nematostella vectensis (phylum, Cnidaria; class, Anthozoa). Development 131:2463–2474

    Article  CAS  PubMed  Google Scholar 

  • Martyn AA, Hong H, Ringuette MJ, Desser SS (2002) Changes in host and parasite-derived cellular and extracellular matrix components in developing cysts of Myxobolus pendula (Myxozoa). J Eukaryot Microbiol 19:175–182

    Google Scholar 

  • McGurk C, Morris DJ, Adams A (2006) Sequential development of Buddenbrockia plumatellae (Myxozoa : Malacosporea) within Plumatella repens (Bryozoa : Phylactolaemata). Dis Aquat Organ 73:159–169

    Google Scholar 

  • Morris DJ (2010) Cell formation by myxozoan species is not explained by dogma. Proc Biol Sci 277:2565–2570. doi:10.1098/rspb.2010.0282

    Article  PubMed Central  PubMed  Google Scholar 

  • Morris DJ (2012) A new model for myxosporean (Myxozoa) development explains the endogenous budding phenomenon, the nature of cell within cell life stages and evolution of parasitism from a cnidarian ancestor. Int J Parasitol 42:829–840. doi:10.1016/j.ijpara.2012.06.001

    Article  CAS  PubMed  Google Scholar 

  • Morris DJ, Adams A (2007) Sacculogenesis and sporogony of Tetracapsuloides bryosalmonae (Myxozoa: Malacosporea) within the bryozoan host Fredericella sultana (Bryozoa: Phylactolaemata). Parasit Res 100:983–992

    Article  CAS  Google Scholar 

  • Morris DJ, Adams A (2008) Sporogony of Tetracapsuloides bryosalmonae in the brown trout Salmo trutta and the role of the tertiary cell during the vertebrate phase of myxozoan life cycles. Parasitology 135:1075–1092

    Article  CAS  PubMed  Google Scholar 

  • Morris DJ, Freeman MA (2010) Hyperparasitism has wide-ranging implications for studies on the invertebrate phase of myxosporean (Myxozoa) life cycles. Int J Parasitol 40:357–369. doi:10.1016/j.ijpara.2009.08.014

    Article  CAS  PubMed  Google Scholar 

  • Morrison CM, Martell JD, Leggiadro C, O’Neil D (1996) Ceratomyxa drepanosettae in the gallbladder of the Atlantic halibut, Hippoglossus hippoglossus, from the northwest Atlantic Ocean. Folia Parasitol (Praha) 43:20–36

    CAS  Google Scholar 

  • Munoz P, Palenzuela O, Alvarez-Pellitero P, Sitjà-Bobadilla A (1999) Comparative studies on carbohydrates of several myxosporean parasites of fish using lectin histochemical methods. Folia Parasitol 46:241–247

    Google Scholar 

  • Niven JE, Farris SM (2012) Miniaturization of nervous systems and neurons. Curr Biol 22:R323–R329. doi:10.1016/j.cub.2012.04.002

    Article  CAS  PubMed  Google Scholar 

  • Obiekezie A, Schmahl G (1993) Henneguya laterocapsulata Landsberg, 1987 (Myxosporea, Myxozoa) in cultured hybrid African catfish: Ultrastructure of the parasite-host interface. Eur J Protistol 29:38–41. doi:10.1016/S0932-4739(11)80295-6

  • Okamura B, Curry A, Wood TS, Canning EU (2002) Ultrastructure of Buddenbrockia identifies it as a myxozoan and verifies the bilaterian origin of the Myxozoa. Parasitology 124:215–223

    Article  CAS  PubMed  Google Scholar 

  • Paperna I, Hartley A, Cross R (1987) Ultrastructural studies on the plasmodium of Myxidium giardi (Myxosporea) and its attachment to the epithelium of the urinary bladder. Int J Parasitol 17:813–819

    Article  CAS  PubMed  Google Scholar 

  • Pepling ME, Spradling AC (1998) Female mouse germ cells form synchronously dividing cysts. Development 125:3323–3328

    CAS  PubMed  Google Scholar 

  • Pilot F, Lecuit T (2005) Compartmentalized morphogenesis in epithelia: from cell to tissue shape. Dev Dyn 232:685–694. doi:10.1002/dvdy.20334

    Article  CAS  PubMed  Google Scholar 

  • Raikova EV (1980) Morphology, ultrastructure, and development of the parasitic larva and its surrounding trophamnion of Polypodium hydriforme Ussov (Coelenterata). Cell Tissue Res 206:487–500

    Article  CAS  PubMed  Google Scholar 

  • Raikova EV (1994) Life-cycle, cytology, and morphology of Polypodium hydriforme, a coelenterate parasite of the eggs of acipenseriform fishes. J Parasitol 80:1–22

    Article  CAS  PubMed  Google Scholar 

  • Rangel LF, Azevedo C, Casal G, Santos MJ (2012) Ultrastructural aspects of Ellipsomyxa mugilis (Myxozoa: Ceratomyxidae) spores and developmental stages in Nereis diversicolor (Polychaeta: Nereidae). J Parasitol 98:513–519

    Article  PubMed  Google Scholar 

  • Redondo MJ, Quiroga MI, Palenzuela O, Nieto JM, Alvarez-Pellitero P (2003) Ultrastructural studies on the development of Enteromyxum scophthalmi (Myxozoa), an enteric parasite of turbot (Scophthalmus maximus L.). Parasitol Res 90:192–202

    Article  PubMed  Google Scholar 

  • Rocha S, Casal G, Matos P, Matos E, Dkihl M, Azevedo C (2011) Description of Triangulamyxa psittaca sp. nov. (Myxozoa: Myxosporea), a new parasite in the urinary bladder of Colomesus psittacus (Teleostei) from the Amazon River. Acta Protozool 50:327–338. doi:10.4467/16890027AP.11.030.0067

    Google Scholar 

  • Rocha S, Casal G, Rangel L, et al. (2013) Ultrastructural and phylogenetic description of Zschokkella auratis sp. nov. (Myxozoa), a parasite of the gilthead seabream Sparus aurata. Dis Aquat Organ 107:19–30. doi:10.3354/dao02661

  • Schmidt-Rhaesa A (2007) The evolution of organ systems. Oxford University Press, Oxford

    Book  Google Scholar 

  • Schröder O (1912) Zur Kenntnis der Buddenbrockia plumatellae Ol. Schröder. Z Wiss Zool 102:79–91

    Google Scholar 

  • Seipel K, Schmid V (2006) Mesodermal anatomies in cnidarian polyps and medusae. Int J Dev Biol 50:589–599

    Article  PubMed  Google Scholar 

  • Shikina S, Chen C-J, Liou J-Y, Shao Z-F, Chung Y-J, Lee Y-H, Chang C-F (2012) Germ cell development in the scleractinian coral Euphyllia ancora (Cnidaria, Anthozoa). PLoS ONE 7:e41569. doi:10.1371/journal.pone.0041569

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Shook D, Keller R (2003) Mechanisms, mechanics and function of epithelial-mesenchymal transitions in early development. Mech Dev 120:1351–1383

    Article  CAS  PubMed  Google Scholar 

  • Siddall ME, Martin DS, Bridge D, Desser SS, Cone DK (1995) The demise of a phylum of protists: phylogeny of Myxozoa and other parasitic Cnidaria. J Parasitol 81:961–967

    Article  CAS  PubMed  Google Scholar 

  • Sitjà-Bobadilla A, Alvarez-Pellitero P (1993a) Zschokkella mugilis n. sp. (Myxosporea: Bivalvulida) from mullets (Teleostei: Mugilidae) of Mediterranean waters: light and electron microscopic description. J Eukaryot Microbiol 40:755–764

    Article  Google Scholar 

  • Sitjà-Bobadilla A, Alvarez-Pellitero P (1993b) Ultrastructural and cytochemical observations on the sporogenesis of Sphaerospora testicularis (Protozoa: Myxosporea) from Mediterranean sea bass, Dicentrarchus labrax (L.). Eur J Protistol 29:219–229. doi:10.1016/S0932-4739(11)80276-2

    Article  PubMed  Google Scholar 

  • Sitjà-Bobadilla A, Alvarez-Pellitero P (1995) Light and electron microscopic description of Polysporoplasma n. g. (Myxosporea: Bivalvulida), Polysporoplasma sparis n. sp. from Sparus aurata (L), and Polysporoplasma mugilis n. sp. from Liza aurata L. Eur J Protistol 31:77–89. doi:10.1016/S0932-4739(11)80360-3

    Article  Google Scholar 

  • Supamattaya K, Fischer-Scherl T, Hoffmann RW, Boonyaratpalin S (1993) Light and and electron microscope observations on presporogonic and sporogonic stages of Sphaerospora epinepheli (Myxosporea) in grouper (Epinephelus malabaricus). J Eukaryot Microbiol 40:71–80

    Article  CAS  PubMed  Google Scholar 

  • Tardent P (1978) Coelenterata, Cnidaria. In: Seidel F (ed) Morphogenese der Tiere. VEB Fischer, Jena, pp 69–415

    Google Scholar 

  • Technau U, Scholz CB (2003) Origin and evolution of endoderm and mesoderm. Int J Dev Biol 47:531–539

    PubMed  Google Scholar 

  • Tyler S (2003) Epithelium—the primary building block for metazoan complexity. Integr Comp Biol 43:55–63

    Article  PubMed  Google Scholar 

  • Wilson RA (2012) The cell biology of schistosomes: a window on the evolution of the early metazoa. Protoplasma 249:503–518. doi:10.1007/s00709-011-0326-x

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

Our research on Buddenbrockia musculature, malacosporean development, and detection of nervous system elements in transcriptome libraries was supported by an EU Marie Curie Intra-European Fellowship (272772). Earlier ultrastructural work to that highlighted cell junctions in malacosporeans was supported the Natural Environment Research Council (GR3/11065, GR3/11068, NER/A/S/1999/00075, NER/B/S/2000/0036) and the Department of Agriculture, Fisheries and Rural Affairs (FC 1112).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexander Gruhl .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Gruhl, A., Okamura, B. (2015). Tissue Characteristics and Development in Myxozoa. In: Okamura, B., Gruhl, A., Bartholomew, J. (eds) Myxozoan Evolution, Ecology and Development. Springer, Cham. https://doi.org/10.1007/978-3-319-14753-6_9

Download citation

Publish with us

Policies and ethics