Skip to main content

Risk Assessments and Approaches for Evaluating Myxozoan Disease Impacts

  • Chapter
  • First Online:
Myxozoan Evolution, Ecology and Development

Abstract

Risk assessments are increasingly being used as tools to examine the possibility and consequences of transboundary introductions of pathogens and parasites of important aquaculture species. Developing these tools for myxozoan parasites is complicated by their two-host life cycles and our lack of basic data for many parameters. The distributions of many myxozoans are undocumented, techniques used for detection of myxozoan may vary in sensitivity and specificity, and often, the invertebrate host and its ecological requirements are poorly understood. Risk assessments for myxozoans have been performed for a variety of reasons and incorporate different geographic scopes and management questions. In this chapter, we review the general components of a risk assessment, discuss specific data requirements for myxozoan risk assessments, and provide examples of myxozoan risk assessments in relation to importation of food fish, emerging aquaculture species and wild fisheries, and pathogen transmission from aquaculture to wild fish.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abd-Elfattah A, Fontes I, Kumar GL et al (2014) Vertical transmission of Tetracapsuloides bryosalmonae (Myxozoa), the causative agent of salmonid proliferative kidney disease. Parasitology 141:482–490

    Article  PubMed  Google Scholar 

  • Alama-Bermejo G, Šíma R, Raga J et al (2013) Understanding myxozoan infection dynamics in the sea: seasonality and transmission of Ceratomyxa puntazzi. Int J Parasitiol 43:771–780

    Article  Google Scholar 

  • American Fisheries Society Fish Health Section (2012) Fish health section blue book: suggested procedures for the detection and identification of certain finfish and shellfish pathogens, 2012 edn. American Fisheries Society, American Fisheries Society Symposium, Bethesda, Maryland

    Google Scholar 

  • Arechavala-Lopez P, Sanchez-Jerez P, Bayle-Sempere JT et al (2013) Reared fish, farmed escapees and wild fish stocks—a triangle of pathogen transmission of concern to Mediterranean aquaculture management. Aquacult Env Int 3:153–161

    Article  Google Scholar 

  • Arsan EL, Atkinson SD, Hallett SL et al (2007) Expanded geographical distribution of Myxobolus cerebralis: first detections from Alaska. J Fish Dis 30:483–491

    Article  CAS  PubMed  Google Scholar 

  • Arsan EL, Bartholomew JL (2008) Potential for the dissemination of the non-native salmonid parasite Myxobolus cerebralis in Alaska. J Aquat Anim Health 20:136–149

    Article  PubMed  Google Scholar 

  • Arsan EL, Bartholomew JL (2009) Potential dispersal of the non-native parasite Myxobolus cerebralis in the Willamette River Basin, Oregon: a qualitative analysis of risk. Rev Fish Sci 17:360–372

    Article  CAS  Google Scholar 

  • Atkinson SD, Foott JS, Bartholomew JL (2014) Erection of Ceratonova n. gen. (Myxosporea: Ceratomyxidae) to encompass freshwater species C. gasterostea n. sp. from threespine stickleback (Gasterosteus aculeatus) and C. shasta n. comb. from salmonid fishes. J Parasitol (epub 22 Apr 2014)

    Google Scholar 

  • Ayre KK, Caldwell CA, Stinson J et al (2014) Analysis of regional scale risk of whirling disease in populations of Colorado and Rio Grande cutthroat trout using a bayesian belief network model. Risk Anal. doi:10.1111/risa.12189

    PubMed  Google Scholar 

  • Bartholomew JL, Kerans BL, Hedrick RP, MacDiarmid SC, Winton JR (2005) A risk assessment based approach for the management of whirling disease. Rev Fish Sci 13:205–230

    Article  Google Scholar 

  • Bartholomew JL, Lorz HV, Atkinson SD et al (2007) Evaluation of a management strategy to control the spread of Myxobolus cerebralis in a lower Columbia river tributary. N Am J Fish Manag 27:542–550

    Article  Google Scholar 

  • Bartholomew JL, Reno PW (2002) The history and dissemination of whirling disease. In: Bartholomew JL, Wilson JC (eds) Whirling disease: reviews and current topics (American Fisheries Society Symposium 29), Bethesda, Maryland pp 3–24

    Google Scholar 

  • Beauchamp KA, Kathman RD, McDowel TS et al (2001) Molecular phylogeny of tubificids oligochaetes with special emphasis on Tubifex tubifex (Tubificidae). Mol Phylogenet Evol 19:216–224

    Article  CAS  PubMed  Google Scholar 

  • Bruneau NA (2001) Quantitative risk assessment for the introduction of Myxobolus cerebralis to Alberta, Canada, through the importation of live-farmed salmonids. In: Rogers CJ (ed) Risk analysis in aquatic animal health. Office International des Epizooties, Paris, pp 41–50

    Google Scholar 

  • Burkhardt-Holm P, Scheurer K (2007) Application of the weight-of-evidence approach to assess the decline of brown trout (Salmo trutta) in Swiss rivers. Aquat Sci 69:51–70

    Article  CAS  Google Scholar 

  • Covello VT, Merkhofer MW (1993) Risk assessment methods: approaches for assessing health and environmental risks. Plenum Publishing, New York

    Book  Google Scholar 

  • Diamant A (1997) Fish-to-fish transmission of a marine myxosporean. Dis Aquat Org 30:99–105

    Article  Google Scholar 

  • Diamant A, Colorni A, Ucko M (2007) Parasite and disease transfer between cultured and wild coastal marine fish. In: CIESM workshop 2007. Impact of mariculture on coastal ecosystems. Monographs n 32, Lisboa, Portugal, pp 49–53

    Google Scholar 

  • Engelking HM (2002) Potential for introduction of Myxobolus cerebralis into the Deschutes river watershed in central Oregon from adult anadromous salmonids. In: Bartholomew JL, Wilson JC (eds) Whirling disease: reviews and current topics (American Fisheries Society Symposium 29), Bethesda, Maryland, pp 25–31

    Google Scholar 

  • EFSA Panel on Animal Health and Welfare (2012) Guidance on risk assessment for animal welfare. Eur Food Safety Auth J 10:2513. p 30 http://www.efsa.europa.eu/en/efsajournal/pub/2513.htm. Accessed 18 Sep 2014

  • Gay M, Okamura B, de Kinkelin P (2001) Evidence that infectious stages of Tetracapsula bryosalmonae for rainbow trout, Oncorhynchus mykiss, are present throughout the year. Dis Aquat Org 46:31–40

    Article  CAS  PubMed  Google Scholar 

  • Griffin MJ, Pote LM, Camus AC et al (2009) Application of a real-time PCR assay for the detection of Henneguya ictaluri in commercial channel catfish ponds. Dis Aquat Org 86:223–233

    Article  CAS  PubMed  Google Scholar 

  • Grossel GW, Dykova I, Handlinger J et al (2003) Pentacapsula neurophila sp. n. (Multivalvulida) from the central nervous system of striped trumpeter, Latris lineata (Forster, 1801). J Fish Dis 26:315–320

    Article  CAS  PubMed  Google Scholar 

  • Hallett SL, Bartholomew JL (2008) Effects of water flow on the infection dynamics of Myxobolus cerebralis. Parasitology 135:371–384

    Article  CAS  PubMed  Google Scholar 

  • Hallett SL, Bartholomew JL (2009) Development and application of a duplex QPCR for river water samples to monitor the myxozoan parasite Parvicapsula minibicornis. Dis Aquat Org 86:39–50

    Article  PubMed  Google Scholar 

  • Hallett SL, Bartholomew JL (2011) Myxobolus cerebralis and Ceratomyxa shasta. In: Woo PTK, Buckmann K (eds) Fish parasites: pathobiology and protection. CAB International, Wallingford

    Google Scholar 

  • Hallett SL, Ray RA, Hurst CN et al (2012) Density of the waterborne parasite, Ceratomyxa shasta, and biological effects on salmon. Appl Environ Microbiol 78:3724–3731

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Hartigan A, Phalen DN, Å lapeta J (2010) Museum material reveals a frog parasite emergence after the invasion of the cane toad in Australia. Parasit Vectors 3:50

    Article  PubMed Central  PubMed  Google Scholar 

  • Hartikainen H, Johnes P, Moncrieff C et al (2009) Bryozoan populations reflect nutrient enrichment and productivity gradients in rivers. Freshw Biol 54:2320–2334

    Article  CAS  Google Scholar 

  • Hartikainen H, Okamura B (2012) Castrating parasites and colonial hosts. Parasitology 139:547–556

    Article  CAS  PubMed  Google Scholar 

  • Hedrick RP (1998) Relationships of the host, pathogen, and environment: implications for diseases of cultured and wild fish populations. J Aquat Anim Health 10:107–111

    Article  Google Scholar 

  • Henderson M, Okamura B (2004) The phylogeography of salmonid proliferative kidney disease in Europe and North America. Proc R Soc Lond B Biol Sci 271:1729–1736

    Article  Google Scholar 

  • Hewitt GC, Little RW (1972) Whirling disease in New Zealand trout caused by Myxosoma cerebralis (Hofer, 1903) (Protozoa: Myxosporidia). N Z J Mar Freshw Res 6:1–10

    Article  Google Scholar 

  • Hogge CI, Campbell MR, Johnson KA (2004) Discriminating between a neurotropic Myxobolus sp. and M. cerebralis, the causative agent of salmonid whirling disease. J Aquat Anim Health 16:137–144

    Article  Google Scholar 

  • Hogge CI, Campbell MR, Johnson KA (2008) A new species of myxozoan (Myxosporea) from the brain and spinal cord of rainbow trout (Oncorhynchus mykiss) from Idaho. J Parasitol 94:218–222

    Article  CAS  PubMed  Google Scholar 

  • Hutson KS, Ernst I, Whittington ID (2007) Risk assessment for metazoan parasites of yellowtail kingfish Seriola lalandi (Perciformes: Carangidae) in South Australian sea-cage aquaculture. Aquaculture 271:85–99

    Article  Google Scholar 

  • Kahn SA, Beers PT, Findlay VL et al (1999) Import risk analysis on non-viable salmonids and non-salmonid marine finfish. Australian Quarantine and Inspection Service, Australia http://www.daff.gov.au/ba/ira/final-animal/marine-finfish. Accessed 18 Sep 2014

  • Kent ML, Whitaker DJ, Dawe SC (1997) Parvicapsula minibicornis n. sp. (Myxozoa, Myxosporea) from the kidney of sockeye salmon (Oncorhynchus nerka) from British Columbia, Canada. J Parasitol 83:1153–1156

    Article  CAS  PubMed  Google Scholar 

  • Kerans BL, Stevens RI, Lemmon JC (2005) Water temperature affects a host parasite interaction: Tubifex tubifex and Myxobolus cerebralis. J Aquat Anim Health 17:216–221

    Article  Google Scholar 

  • Koel TM, Kerans BL, Barras SC et al (2010) Avian piscivores vector Myxobolus cerebralis in the greater yellowstone ecosystem. Trans Am Fish Soc 139:976–988

    Article  Google Scholar 

  • Krueger RC, Kerans BL, Vincent ER et al (2006) Risk of Myxobolus cerebralis infection to rainbow trout in the Madison river, Montana, USA. Ecol Appl 16:770–783

    Article  PubMed  Google Scholar 

  • Lodh NL, Stevens RI, Kerans BL (2011) Prevalence of Myxobolus cerebralis infections among genetic lineages of Tubifex tubifex at three locations in the Madison river, Montana. J Parasitol 97:531–534

    Article  CAS  PubMed  Google Scholar 

  • Lodh NL, Rizzo DM, Kerans B et al (2013) If you’ve seen one worm, have you seen them all? Spatial community and population genetic structure of three tubificid taxa in Montana watersheds. Freshwater Science (in press)

    Google Scholar 

  • Lorz HV, Amandi A, Banner CR et al (1989) Detection of Myxobolus (Myxosoma) cerebralis in salmonid fishes in Oregon. J Aquat Anim Health 1:217–221

    Article  Google Scholar 

  • Lowers JM, Bartholomew JL (2003) Detection of myxozoan parasites in oligochaetes imported as food for ornamental fish. J Parasitol 89:84–91

    Article  PubMed  Google Scholar 

  • MacConnell E, Vincent ER (2002) Review. The effects of Myxobolus cerebralis on the salmonid host. In: Bartholomew JL, Wilson JC (eds) Whirling disease: reviews and current topics (American Fisheries Society Symposium 29), Bethesda, Maryland, pp 95–108

    Google Scholar 

  • MacDiarmid SC (1994) The risk of introducing exotic diseases of fish into New Zealand through importation of ocean-caught Pacific salmon from Canada. Ministry of Agriculture Regulatory Authority, New Zealand, p 170

    Google Scholar 

  • MacDiarmid SC (1997) Risk analysis, international trade, and animal health. In: Molak V (ed) Fundamentals of risk analysis and risk management. CRC Lewis, Boca Raton, pp 377–387

    Google Scholar 

  • McGinnis SA, Kerans BL (2013) Land use and host community characteristics as predictors of disease risk. Landsc Ecol 28:29–44

    Article  Google Scholar 

  • Morris DJ, Adams A (2006) Transmission of Tetracapsuloides bryosalmonae (Myxozoa: Malacosporea), the causative organism of salmonid proliferative kidney disease, to the freshwater bryozoan Fredericella sultana. Parasitology 133:701–709

    Article  CAS  PubMed  Google Scholar 

  • Murray N (2002) Import risk analysis: animals and animal products. Ministry of Agriculture and Forestry, Wellington

    Google Scholar 

  • NRC, Committee on the Institutional Means for Assessment of Risks to Public Health (1983) Risk assessment in the federal government: managing the process. National Academy Press, Washington

    Google Scholar 

  • Nehring RB (2006) Colorado’s cold water fisheries: whirling disease case histories and insights for risk management. Special Report No. 79, Colorado Division of Wildlife, Aquatic Wildlife Research

    Google Scholar 

  • Neudecker RA, McMahon TE, Vincent ER (2012) Spatial and temporal variation of whirling disease risk in Montana spring creeks and rivers. J Aquat Anim Health 24:201–212

    Article  PubMed  Google Scholar 

  • Nowak B, Rough K, Ellis K et al (2003) Aquafin CRC—southern bluefin tuna aquaculture subprogram: a risk assessment of factors influencing the health of southern bluefin tuna. Tasmanian Aquaculture and Fisheries Institute http://trove.nla.gov.au/version/42646382. Accessed 18 Sep 2014

  • Oidtmann B, Peeler E, Lyngstad T et al (2013) Risk-based methods for fish and terrestrial animal disease surveillance. Prev Vet Med 112:13–26

    Article  PubMed  Google Scholar 

  • Okamura B, Hartikainen H, Schmidt-Posthaus H et al (2011) Proliferative kidney disease as an emerging disease: the importance of life cycle complexity and environmental change. Freshw Biol 56:735–753

    Article  Google Scholar 

  • Office International des Epizooties (2003) International aquatic animal health code, 6th edn. Office International des Epizooties, Paris

    Google Scholar 

  • Padrós F, Palenzuela O, Hispano C, Tosas O, Zarza C, Crespo S, Alvarez-Pellitero P (2001) Myxidium leei (Myxozoa) infections in aquarium-reared Mediterranean fish species. Dis Aquat Org 47:57–62

    Article  PubMed  Google Scholar 

  • Peeler EJ, Feist SW, Longshaw M et al (2008) An assessment of the variation in the prevalence of renal myxosporidiosis and hepatitis in wild brown trout, Salmo trutta L., within and between rivers in South-West England. J Fish Dis 31:719–728

    Article  CAS  PubMed  Google Scholar 

  • Peeler EJ, Murray AG, Thebault A et al (2006) Risk assessment and predictive modeling—a review of their application in aquatic animal health. VESO, Norway 67 pp

    Google Scholar 

  • Peeler EJ, Murray AG, Thebault A et al (2007) The application of risk analysis in aquatic animal health management. Prev Vet Med 81:3–20

    Article  CAS  PubMed  Google Scholar 

  • Peeler EJ, Taylor NGH (2011) The application of epidemiology in aquatic animal health—opportunities and challenges. Vet Res 42:94

    Article  PubMed Central  PubMed  Google Scholar 

  • Rasmussen C, Zickovich J, Winton J et al (2008) Variability in triactinomyxon production from Tubifex tubifex populations from the same mitochondrial DNA lineage infected with Myxobolus cerebralis, the causative agent of whirling disease in salmonids. J Parasitol 94:700–708

    Article  CAS  PubMed  Google Scholar 

  • Raynard R, Wahli T, Vatsos I et al (2007) Review of disease interactions and pathogen exchange between farmed and wild finfish and shellfish in Europe. VESO, Norway, p 287

    Google Scholar 

  • Redondo MJ, Palenzuela O, Alvarez-Pellitero P (2004) Studies on transmission and life cycle of Enteromyxum scophthalmi (Myxozoa), an enteric parasite of turbot Scophthalmus maximus. Folia Parasitol 51:188–198

    Article  PubMed  Google Scholar 

  • Ryce EKN, Zale AV, MacConnell E (2004) Effects of fish age and development of whirling parasite dose on the disease in rainbow trout. Dis Aquat Org 59:225–233

    Article  PubMed  Google Scholar 

  • Sánchez-García N, Raga JA, Montero FE (2014) Risk assessment for parasites in cultures of Diplodus puntazzo (Sparidae) in the Western Mediterranean: prospects of cross infection with Sparus aurata. Vet Parasitol http://dx.doi.org/10.1016/j.vetpar.2014.05.013. Accessed 18 Sep 2014

  • Sandell TA, Lorz HV, Stevens DG et al (2001) Dynamics of Myxobolus cerebralis in the Lostine river, Oregon: implications for resident and anadromous salmonids. J Aquat Anim Health 13:142–150

    Article  Google Scholar 

  • Schisler GJ, Bergersen EP (2002) Evaluation of risk of high elevation Colorado waters to the establishment of Myxobolus cerebralis. In: Bartholomew JL, Wilson JC (eds) Whirling disease: reviews and current topics (American Fisheries Society Symposium 29), Bethesda, Maryland, pp 33–41

    Google Scholar 

  • Stinson MET, Bartholomew JL (2012) Predicted redistribution of Ceratomyxa shasta genotypes with salmonid passage in the Deschutes river, Oregon. J Aquat Anim Health 24:274–280

    Article  PubMed  Google Scholar 

  • Stocking RW, Holt RA, Foott JS et al (2006) Spatial and temporal occurrence of the salmonid parasite Ceratomyxa shasta (Myxozoa) in the Oregon-California Klamath River Basin. J Aquat Anim Health 18:194–202

    Article  Google Scholar 

  • Stone MAB, MacDiarmid SC, Pharo HJ (1997) Import health risk analysis: salmonids for human consumption. Ministry of Agriculture Regulatory Authority, New Zealand, p 269

    Google Scholar 

  • Thorburn MA (1996) Apparent prevalence of fish pathogens in asymptomatic salmonid populations and its effect on misclassifying population infection status. J Aquat Anim Health 8:271–277

    Article  Google Scholar 

  • Toledo-Guede K, Sanchez-Jerez P, Mora-Vidal J et al (2012) Escaped introduced sea bass (Dicentrarchus labrax) infected by Sphaerospora testicularis (Myxozoa) reach maturity in coastal habitats off Canary Islands. Mar Ecol 33:26–31

    Article  Google Scholar 

  • Tops S, Lockwood W, Okamura B (2006) Temperature-driven proliferation of Tetracapsuloides bryosalmonae in bryozoan hosts portends salmonid declines. Dis Aquat Org 70:227–236

    Article  CAS  PubMed  Google Scholar 

  • Vincent ER (2002) Relative susceptibility of various salmonids to whirling disease with emphasis on rainbow and cutthroat trout. In: Bartholomew JL, Wilson JC (eds) Whirling disease: reviews and current topics (American Fisheries Society Symposium 29), Bethesda, Maryland, pp 109–115

    Google Scholar 

  • Vose DJ (2000) Risk analysis: a quantitative guide. Wiley, Chichester

    Google Scholar 

  • Williams CJ, Moffitt CM (2010) Estimation of fish and wildlife disease prevalence from imperfect diagnostic tests on pooled samples with varying pool sizes. Ecol Inform 5:273–280

    Article  Google Scholar 

  • Zielinski CM, Lorz HV, Bartholomew JL (2010) Detection of Myxobolus cerebralis in the lower Deschutes River Basin, Oregon, USA. N Am J Fish Manag 30:1032–1040

    Article  Google Scholar 

  • Zielinski CM (2008) Risk assessment: introduction and establishment of Myxobolus cerebralis in the Deschutes River Basin, Oregon, USA. Masters Thesis, Oregon State University

    Google Scholar 

Download references

Acknowledgments

We thank Stephen Atkinson for creation of the figures in this chapter.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jerri L. Bartholomew .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Bartholomew, J.L., Kerans, B. (2015). Risk Assessments and Approaches for Evaluating Myxozoan Disease Impacts. In: Okamura, B., Gruhl, A., Bartholomew, J. (eds) Myxozoan Evolution, Ecology and Development. Springer, Cham. https://doi.org/10.1007/978-3-319-14753-6_20

Download citation

Publish with us

Policies and ethics