Skip to main content

Obstacle Avoidance with Industrial Robots

  • Chapter
  • First Online:
Motion and Operation Planning of Robotic Systems

Part of the book series: Mechanisms and Machine Science ((Mechan. Machine Science,volume 29))

Abstract

One of the important features that a robot must possess when working in an unstructured environment is the ability to deal with objects. Such objects can be a part of the task, e.g., in assembly operations, or they can represent an obstacle. In the case when contact with the objects is not desired, the main issue is how to perform the desired task without any risk of collisions with the objects in the workspace. A general strategy for obstacle avoidance is to reconfigure the robot so that it is not in the contact with the obstacle. However, a reconfiguration without changing the task motion is only feasible if the robot has sufficient redundant degrees of freedom (DOFs). In this chapter we present different approaches to the control methods of redundant robot manipulators performing multiple tasks with obstacle avoidance. The pros and cons of the presented methods and the differences between them are also discussed. The performance of the methods is also demonstrated by simulation and on real robots.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Chiaverini S (1997) Singularity-robust task-priority redundancy resolution for real-time kinematic control of robot manipulators. IEEE Trans Robot Autom 13(3):398–410. doi:10.1109/70.585902

    Article  Google Scholar 

  2. Egeland O (1987) Task-space tracking with redundant manipulators. IEEE J Robot Autom 3(5):471–475. doi:10.1109/JRA.1987.1087118

    Article  Google Scholar 

  3. Lenarcic J, Stanisic M (2003) A humanoid shoulder complex and the humeral pointing kinematics. IEEE Trans Robot Autom 19(3):499–506

    Article  Google Scholar 

  4. Nakamura Y, Hanafusa H, Yoshikawa T (1987) Task-priority based redundancy control of robot manipulators. Int J Robot Res 6(2):3–15

    Article  Google Scholar 

  5. Kuffner JJ, Lavalle SM (2000) RRT-connect: an efficient approach to single-query path planning, April, pp 995–1001

    Google Scholar 

  6. Lozano-Perez T (1983) Spatial planning: a configuration space approach. IEEE Trans Comput 100(2):108–120

    Article  MathSciNet  Google Scholar 

  7. Lozano-Pérez T, Wesley MA (1979) An algorithm for planning collision-free paths among polyhedral obstacles. Commun ACM 22:560–570

    Article  Google Scholar 

  8. Burns B (2005) Toward optimal configuration space sampling. In: Proceedings of robotics: science and systems, pp 1–6

    Google Scholar 

  9. Diankov R, Kuffner J (2007) Randomized statistical path planning. In: Proceedings of IEEE/RSJ international conference on intelligent robots and systems. IEEE, pp 1–6. doi:10.1109/IROS.2007.4399557. http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=4399557

  10. Toussaint M (2009) Robot trajectory optimization using approximate inference. In: Proceedings of the 26th annual international conference on machine learning—ICML’09. ACM Press, New York, pp 1049–1056. doi:10.1145/1553374.1553508. http://portal.acm.org/citation.cfm?doid=1553374.1553508

  11. Brock O, Khatib O, Viji S (2002) Task-consistent obstacle avoidance and motion behavior for mobile manipulation. In: Proceedings of IEEE international conference on robotics and automation, ICRA’02, vol 1, pp 388–393. doi:10.1109/ROBOT.2002.1013391

  12. Colbaugh R, Seraji H, Glass K (1989) Obstacle avoidance for redundant robots using configuration control. J Robot Syst 6(6):721–744

    Article  MATH  Google Scholar 

  13. Glass K, Colbaugh R, Lim D, Seraji H (1995) Real-time collision avoidance for redundant manipulators. IEEE Trans Robot Autom 11(3):448–457

    Article  Google Scholar 

  14. Guo Z, Hsia T (1993) Joint trajectory generation for redundant robots in an environment with obstacles. J Robot Syst 10(2):199–215

    Article  MATH  Google Scholar 

  15. Khatib O (1986) Real-time obstacle avoidance for manipulators and mobile robots. Int J Robot Res 5(1):90–98. doi:10.1177/027836498600500106

    Article  MathSciNet  Google Scholar 

  16. Kim JO, Khosla PK (1992) Real-time obstacle avoidance using harmonic potential functions. IEEE Trans Robot Autom 8(3):338–349

    Article  Google Scholar 

  17. Maciejewski AA, Klein CA (1985) Obstacle avoidance for kinematically redundant manipulators in dynamically varying environments. Int J Robot Res 4(3):109–117. doi:10.1177/027836498500400308

    Article  Google Scholar 

  18. McLean A, Cameron S (1996) The virtual springs method: path planning and collision avoidance for redundant manipulators. Int J Robot Res 15(4):300–319

    Article  Google Scholar 

  19. Seraji H, Bon B (1999) Real-time collision avoidance for position-controlled manipulators. IEEE Trans Robot Autom 15(4):670–677

    Article  Google Scholar 

  20. Volpe R, Khosla P (1993) A theoretical and experimental investigation of impact control for manipulators. Int J Robot Res 12(4):351–365

    Article  Google Scholar 

  21. Feder HJS, Slotine JJE (1997) Real-time path planning using harmonic potentials in dynamic environments. In: Proceedings of IEEE international conference on robotics and automation, April, pp 874–881

    Google Scholar 

  22. Iossifidis I, Sch G (2006) Dynamical systems approach for the autonomous avoidance of obstacles and joint-limits for an redundant robot arm. In: Proceedings of IEEE/RSJ international conference on intelligent robots and systems, pp 580–585

    Google Scholar 

  23. Khansari-Zadeh SM, Billard A (2012) A dynamical system approach to realtime obstacle avoidance. Auton Robot 32(4):433–454. doi:10.1007/s10514-012-9287-y. http://link.springer.com/10.1007/s10514-012-9287-y

  24. Park DHPDH, Hoffmann H, Pastor P, Schaal S (2008) Movement reproduction and obstacle avoidance with dynamic movement primitives and potential fields. In: Proceedings of 8th IEEE-RAS international conference on humanoid robots, humanoids 2008. IEEE, vol 121, pp 91–98. doi:10.1109/ICHR.2008.4755937. http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=4755937

  25. Sprunk C, Lau B, Pfaff P (2011) Online generation of kinodynamic trajectories for non-circular omnidirectional robots. In: Proceedings of IEEE international conference on robotics and automation, pp 72–77

    Google Scholar 

  26. Newman WS (1989) Automatic obstacle avoidance at high speeds via reflex control. In: Proceedings of IEEE international conference on robotics and automation. IEEE, pp 1104–1109

    Google Scholar 

  27. Xie F, Qu Z, Garfinkel A (1998) Dynamics of reentry around a circular obstacle in cardiac tissue. Phys Rev E 58(5):6355

    Article  Google Scholar 

  28. O’Neil K (2002) Divergence of linear acceleration-based redundancy resolution schemes. IEEE Trans Robot Autom 18(4):625–631. doi:10.1109/TRA.2002.801046

    Article  Google Scholar 

  29. Khatib O (1987) A unified approach for motion and force control of robot manipulators: the operational space formulation. IEEE J Robot Autom 3(1):43–53. doi:10.1109/JRA.1987.1087068

    Article  Google Scholar 

  30. Mansard N, Khatib O, Kheddar A (2009) A unified approach to integrate unilateral constraints in the stack of tasks. IEEE Trans Robot 25(3):670–685. doi:10.1109/TRO.2009.2020345

    Article  Google Scholar 

  31. Sentis L, Park J, Khatib O (2010) Compliant control of multicontact and center-of-mass behaviors in humanoid robots. IEEE Trans Robot 26(3):483–501. doi:10.1109/TRO.2010.2043757

    Article  Google Scholar 

  32. Stasse O, Escande A, Mansard N, Miossec S, Evrard P, Kheddar A (2008) Real-time (self)-collision avoidance task on a HRP-2 humanoid robot. In: IEEE international conference on robotics and automation, pp 3200–3205

    Google Scholar 

  33. Žlajpah L, Petrič T (2012) Serial and parallel robot manipulators—kinematics, dynamics, control and optimization, chap obstacle avoidance for redundant manipulators as control problem. InTech, pp 203–230

    Google Scholar 

  34. Sciavicco L, Siciliano B (2005) Modelling and control of robot manipulators, 2nd edn., Advanced textbooks in control and signal processingSpringer, London

    Google Scholar 

  35. Petrič T, Žlajpah L (2013) Smooth continuous transition between tasks on a kinematic control level: obstacle avoidance as a control problem. Robot Auton Syst 61(9):948–959

    Article  Google Scholar 

  36. Petrič T, Gams A, Babič J, Žlajpah L (2013) Reflexive stability control framework for humanoid robots. Auton Robot 34(4):347–361. doi:10.1007/s10514-013-9329-0

    Article  Google Scholar 

  37. Petrič T, Žlajpah L (2011) Smooth transition between tasks on a kinematic control level: application to self collision avoidance for two kuka lwr robots. In: 2011 IEEE international conference on robotics and biomimetics, pp 162–167

    Google Scholar 

  38. Sugiura H, Gienger M, Janssen H, Goerick C (2007) Real-time collision avoidance with whole body motion control for humanoid robots. In: IEEE/RSJ international conference on intelligent robots and systems, IROS 2007, pp 2053–2058. doi:10.1109/IROS.2007.4399062

  39. Žlajpah L, Nemec B (2002) Kinematic control algorithms for on-line obstacle avoidance for redundant manipulators. In: IEEE/RSJ international conference on intelligent robots and systems, vol 2, pp 1898–1903. doi:10.1109/IRDS.2002.1044033

  40. Arun KS, Huang TS, Blostein SD (1987) Least-squares fitting of two 3-d point sets. IEEE Trans Pattern Anal Mach Intell 5:698–700

    Article  Google Scholar 

  41. Khatib O, Brock O, Chang KS, Ruspini D, Sentis L, Viji S (2004) Human-centered robotics and interactive haptic simulation. Int J Robot Res 23(2):167–178

    Article  Google Scholar 

  42. Konietschke R, Hirzinger G (2009) Inverse kinematics with closed form solutions for highly redundant robotic systems. In: Proceedings of IEEE international conference on robotics and automation. IEEE, pp 2945–2950

    Google Scholar 

  43. Santis AD, Siciliano B (2008) Inverse kinematics of robot manipulators with multiple moving control points. In: Lenarčič J, Wenger P (eds) Advances in robot kinematics: analysis and design. Springer, New York, pp 429–438

    Chapter  Google Scholar 

  44. Antonelli G (2009) Stability analysis for prioritized closed-loop inverse kinematic algorithms for redundant robotic systems. IEEE Trans Robot 25(5):985–994. doi:10.1109/TRO.2009.2017135

    Article  Google Scholar 

  45. Chiaverini S, Oriolo G, Walker ID (2008) Kinematically redundant manipulators. In: Siciliano B, Khatib O (eds) Springer handbook of robotics, chap 11. Springer, Berlin, pp 245–268

    Google Scholar 

  46. Park J, Choi YJ, Chung WK, Youm Y (2001) Multiple tasks kinematics using weighted pseudo-inverse for kinematically redundant manipulators. In: Proceedings 2001 ICRA. IEEE international conference on robotics and automation (Cat. No.01CH37164), vol 4. IEEE, pp 4041–4047

    Google Scholar 

  47. Baerlocher P, Boulic R (1998) Task-priority formulations for the kinematic control of highly redundant articulated structures. In: Proceedings of IIEEE/RSJ international conference on intelligent robots and systems, vol 1, October, pp 323–329

    Google Scholar 

  48. Chiaverini S, Siciliano B, Egeland O (1994) Review of the damped least-squares inverse kinematics with experiments on an industrial robot manipulator. IEEE Trans Control Syst Technol 2(2):123–134

    Article  Google Scholar 

  49. Sciavicco L, Siciliano B (1986) Solving the inverse kinematic problem for robotic manipulators. In: Morecki A, Bianchi G, Kdzior K (eds) Proceedings of the 6th CISM-IFToMM symposium on theory and practice of robots and manipulators. Springer, Krakow, pp 107–114

    Google Scholar 

  50. Egeland O, Sagli J, Spangelo I, Chiaverini S (1991) A damped least-squares solution to redundancy resolution. In: Proceedings 1991 IEEE international conference on robotics and automation. IEEE Computer Society Press, pp 945–950

    Google Scholar 

  51. Buss SR, Kim JS (2004) Selectively damped least squares for inverse kinematics. J Graph Tools 10:37–49

    Article  Google Scholar 

  52. Deo A, Walker I (1992) Robot subtask performance with singularity robustness using optimal damped least-squares. In: Proceedings 1992 IEEE international conference on robotics and automation. IEEE Computer Society Press, pp 434–441

    Google Scholar 

  53. Maciejewski A, Klein C (1988) Numerical filtering for the operation of robotic manipulators through kinematically singular configurations. J Robot Syst 5(6):527–552

    Article  Google Scholar 

  54. Nakamura Y, Hanafusa H (1986) Inverse kinematics solutions with singularity robustness for robot manipulator control. Trans ASME J Dyn Syst Meas Control 108(3):163–171

    Article  MATH  Google Scholar 

  55. Žlajpah L (2013) Multi-task control for redundant robots using prioritized damped least-squares inverse kinematics. In: 22nd international workshop on robotics in Alpe-Adria-Danube region, Portorož, Slovenia, 11–13 September 2013

    Google Scholar 

  56. Likar N, Nemec B, Žlajpah L (2012) Virtual mechanism approach for dual-arm manipulation. Robotica 1:1–16

    Article  Google Scholar 

  57. Ijspeert A, Nakanishi J, Pastor P, Hoffmann H, Schaal S (2013) Dynamical movement primitives: learning attractor models for motor behaviors. Neural Comput 25(2):328–373

    Article  MATH  MathSciNet  Google Scholar 

  58. Ijspeert A, Nakanishi J, Schaal S (2002) Movement imitation with nonlinear dynamical systems in humanoid robots. In: IEEE international conference on robotics and automation (ICRA), vol 2. Washington, DC, pp 1398–1403

    Google Scholar 

  59. Gams A, Ijspeert AJ, Schaal S, Lenarčič J (2009) On-line learning and modulation of periodic movements with nonlinear dynamical systems. Auton Robot 27(1):3–23

    Article  Google Scholar 

  60. Ijspeert AJ, Nakanishi J, Schaal S (2002) Learning rhythmic movements by demonstration using nonlinear oscillators. In: Proceedings of IEEE/RSJ international conference intelligent robots and systems. Lausanne, pp 958–963

    Google Scholar 

  61. Petrič T, Gams A, Ijspeert AJ, Žlajpah L (2011) On-line frequency adaptation and movement imitation for rhythmic robotic tasks. Int J Robot Res 30(14):1775–1788

    Article  Google Scholar 

  62. Ude A, Gams A, Asfour T, Morimoto J (2010) Task-specific generalization of discrete and periodic dynamic movement primitives. IEEE Trans Robot 26(5):800–815

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. Žlajpah .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Petrič, T., Gams, A., Likar, N., Žlajpah, L. (2015). Obstacle Avoidance with Industrial Robots. In: Carbone, G., Gomez-Bravo, F. (eds) Motion and Operation Planning of Robotic Systems. Mechanisms and Machine Science, vol 29. Springer, Cham. https://doi.org/10.1007/978-3-319-14705-5_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-14705-5_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-14704-8

  • Online ISBN: 978-3-319-14705-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics