Skip to main content

Hexapod Walking Robot Locomotion

  • Chapter
  • First Online:
Motion and Operation Planning of Robotic Systems

Part of the book series: Mechanisms and Machine Science ((Mechan. Machine Science,volume 29))

Abstract

Path planning, gait planning and trajectory planning are assuming an increasing significance for Hexapod Walking robots and more generally, in legged robotics. Indeed, the trend for walking robots is to improve the speed, the stability, the navigation autonomy and the energy efficiency. In this Chapter it will be addressed the problem of Hexapod Walking Robots (HWR) locomotion. An overview of the State of the Art is carried out with references to the numerous contributions to this field. It will be provided a background on the topics of path planning, gait and trajectory planning for HWR locomotion. Special attention will be given to the hexapod gaits, starting from their classification together with a detailed description of most common ones. A case of study is described as referring to previous experiences at LARM in Cassino. Examples of a path planning, gait and trajectory planning are provided through kinematic and dynamic features of Cassino Hexapod leg operation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Genta G (2012) Introduction to the mechanics of space robots. Springer, New York

    Book  Google Scholar 

  2. Nonami K, Barai RK, Irawan A, Daud MR (2014) Hydraulically actuated hexapod robots. Springer, Japan

    Google Scholar 

  3. IFR home page (2014) http://www.ifr.org/. Accessed 18 Oct 2014

  4. Chàvez-Clemente D (2011) Gait optimization for multi-legged walking robots, with application to a lunar hexapod. Ph.D. Thesis, Stanford University, Stanford

    Google Scholar 

  5. Carbone G, Ceccarelli M (2005) Legged robotic systems. In: Kordic V, Lazinica A, Merdan M (eds) Cutting edge robotics. InTech, Vienna, pp 553–576

    Google Scholar 

  6. Gonzalez de Santos P, Garcia E, Estremera J (2006) Quadrupedal locomotion: an introduction to the control of four-legged robots. Springer, London

    Google Scholar 

  7. Cigola M, Pelliccio A, Salotto O, Carbone G, Ottaviano E, Ceccarelli M (2005) Application of robots for inspection and restoration of historical sites. In: Proceeding of international symposium on automation and robotics in construction (paper 37), Ferrara

    Google Scholar 

  8. Jun BH, Shim H, Kim B, Park JY, Baek H, Yoo S, Lee PM (2013) Development of seabed walking robot CR200. In: Proceedings of the OCEANS’13 MTS/IEEE Conference, San Diego, CA, USA, 23–26 September 2013, pp 1–5

    Google Scholar 

  9. Bares J, Hebert M, Kande T, Krotkov E, Mitchell T, Simmons R, Whittaker W (1989) Ambler an autonomous rover for planetary exploration. IEEE Comput 22(6):18–26

    Article  Google Scholar 

  10. Bartholet T, Crawson R (1985) Robot applications for nuclear power plant maintenance; EPRI Report-NP-3941, Research report center, Palo Alto 1985

    Google Scholar 

  11. Oku M, Yang H, Paio G, Harada Y, Adachi K, Barai R, Nonami K (2007) Development of hydraulically actuated hexapod robot COMET-IV-The 1st report: system design and configuration. In: Proceedings of the 2007 JSME conference on robotics and mechatronics 2A2-G01

    Google Scholar 

  12. Silva MF, Tenreiro Machado JA (2007) A historical perspective of legged robots. J Vib Control 13:1447–1486

    Article  MATH  Google Scholar 

  13. Hauser T, Bretl K, Latombe JC, Harada W (2008) Motion planning for legged robots on varied terrain. Int J Robot Res 27:1325

    Article  Google Scholar 

  14. Armada M, Gonzalez de Santos P (1997) Climbing, walking and intervention robots. Ind Robot 24(2):158–163

    Article  Google Scholar 

  15. Autumn K, Buehler M, Cutkosky M, Fearing R, Full RJ, Goldman D, Groff R, Provancher W, Rizzi AA, Saranli U, Saunders A, Koditschek DE (2005) Robotics in scansorial environments. In: Gerhart GR, Shoemaker CM, Gage DW (eds) 5804(1):291–302. SPIE, 2005

    Google Scholar 

  16. Gregorio P, Ahmadi M, Buehler M (1997) Design, control, and energetics of an electrically actuated legged robot. IEEE Trans Syst Man Cybern B 27:626–634

    Article  Google Scholar 

  17. Carbone G, Shrot A, Ceccarelli M (2007) Operation strategy for a low-cost easy-operation Cassino hexapod. Appl Bionics Biomech 4:149–156

    Article  Google Scholar 

  18. Muybridge E (1887) Animal locomotion. University of Pennsylvania

    Google Scholar 

  19. Schneider A, Schmucker U (2006) Force Sensing for multi-legged walking robots: theory and experiments part 1: overview and force sensing. In: Buchli J (ed) Mobile robotics, moving intelligence

    Google Scholar 

  20. Tomovic R, Karplus WJ (1961) Land locomotion simulation and control. In: Proceedings of third international analogue computation, Opatija, Yugoslavia, pp 385–390

    Google Scholar 

  21. Hildebrand M (1967) Symmetrical gaits of horse. Science 150:701–708

    Article  Google Scholar 

  22. McGhee R (1968) Some finite state aspects of legged locomotion. Math Biosci 2:67–84

    Article  MATH  Google Scholar 

  23. Peternella M, Salinari S (1973) Simulation by digital computer of walking machine control system. In: Proceeding of 5th IFAC symposium on automatic control in space, Genova

    Google Scholar 

  24. Bessonov A, Umnov N (1973) The analysis of gaits in six-legged vehicles according to their static stability. In: Proceedings of the 1st CISM-IFToMM conference, Udine, pp 1–9

    Google Scholar 

  25. Sun SS (1974) A theoretical study of gaits for legged locomotion systems. Ph.D. Thesis, The Ohio State University, Columbus

    Google Scholar 

  26. Gurfinkel V, Gurfinkel E, Devjanin E, Efremov E, Zhicharev D, Lensky A, Schneider A, Shtilman L (1982) Investigation of robotics. In: Six-legged walking model of vehicle with supervisory control. Nauka Press, Moscow

    Google Scholar 

  27. McGhee R (1977) Control of legged locomotion systems. In: Proceeding of 18th automatic control conference, San Francisco, pp 205–215

    Google Scholar 

  28. McGhee RB, Iswandhi GI (1979) Adaptive locomotion of a multi legged robot over rouch terrain. IEEE Trans Syst Man Cybern, SMC-9(4):176–182

    Google Scholar 

  29. Song SM, Waldron K (1989) Machines that walk: the adaptive suspension vehicle. MIT Press, Cambridge

    Google Scholar 

  30. Raibert M (1986) Legged robots that balance. MIT Press, Cambridge

    Google Scholar 

  31. Byrd J, De Vries K (1990) A six-legged telerobot for nuclear applications development. Int J Robot Res 9(2):43–52

    Article  Google Scholar 

  32. Song SM, Waldron KJ (1987) An analytical approach for gait study and its applications on wave gaits. Int J Robot Res 6:60–71

    Article  Google Scholar 

  33. Akizono J, Iwasaki M, Asakura O (1989) Development on a walking robot for underwater inspection. In: Proceedings of ICAR’89. Columbus, pp 652–663

    Google Scholar 

  34. Brooks RA (1989) A robot that walks; emergent behaviors from a carefully evolved network. Neural Comput 1:253–262

    Article  Google Scholar 

  35. Pfeiffer F, Eltze J, Weidermann H (1995) Six-legged technical walking considering biological principles. Robot Autom 22–23

    Google Scholar 

  36. Nelson GM, Quinn RD, Bachmann RJ, Flannigan WC, Ritzmann RE, Watson JT (1997) Design and simulation of a cockroach-like hexapod robot. In: Proceedings of the 1997 IEEE international conference on robotics and automation, pp 1106–1111

    Google Scholar 

  37. Koyachi N, Adachi H, Izumi M, Hirose T, Senjo N, Murata R, Arai T (2002) Multimodal control of hexapod mobile manipulator MELMANTIS-1. In: Proceedings of 5th International Conference on Climbing Walking Robots, pp 471–478

    Google Scholar 

  38. Alexandre P, Preumont A (1995) On the gait control of a six-legged walking machine. In: Proceedings of 2nd IFAC workshop on intelligent autonomous vehicles, Espoo

    Google Scholar 

  39. Yang J, Kim J (2000) A fault tolerant gait for a hexapod robot over uneven terrain. IEEE Trans Syst, Man, Cybern, Part B 30(1):172–180

    Article  MathSciNet  Google Scholar 

  40. Saranli U, Buehler M, Koditschek DE (2001) RHex-A simple and highly mobile hexapod robot. Int J Robot Res 20(7):616–631

    Article  Google Scholar 

  41. Lewinger WA, Branicky MS, Quinn RD (2005) Insect-inspired, actively compliant hexapod capable of object manipulation. In: Proceedings of the 8th international conference on climbing and walking robots (CLAWAR’2005), London, UK, 13–15, September 2005, pp 65–72

    Google Scholar 

  42. Collins JJ, Stewart I (2004) Hexapodal gaits and coupled nonlinear oscillator models. Biol Cybern

    Google Scholar 

  43. Arena P, Fortuna L, Frasca M, Patanè L, Pavone M (2006) Realization of a CNN driven cockroach-inspired robot. In: Proceedings of IEEE international symposium on circuits and systems. Kos. doi:10.1109/ISCAS.2006.1693168

  44. Fielding MR, Dunlop GR (2004) Omnidirectional hexapod walking and efficient gaits using restrictedness. Int J Robot Res 23(10):1105–1110

    Article  Google Scholar 

  45. Kennedy B, Koon A, Aghazarian H, Garrett M, Huntsberger T, Magnone L, Robinson M, Townsend J (2005) The Lemur II-class robots for inspection and maintenance of orbital structures: a system description. In: Proceedings of CLAWAR’2005-8th international conference on climbing and walking robots, pp 1069–1076

    Google Scholar 

  46. Asbeck AT, Kim S, McClung A, Parness A, Cutkosky MR (2006) Climbing walls with microspines. In: Proceedings of IEEE international conference robotics and automation, Orlando, pp 4315–4317

    Google Scholar 

  47. Nonami K (2001) Humanitarian mine detection six-legged walking robot Comet-II with two manipulators. In: CLAWAR 2001—climbing and walking robots and the support technologies for mobile machines

    Google Scholar 

  48. Roennau A, Heppner G, Pfozter L, Dillman R (2013) Lauron V: optimized leg configuration for the design of a bio-inspired walking robot. In: Proceedings of the 16th international conference on climbing and walking robots and the support technologies for mobile machines, Sydney, pp 563–571

    Google Scholar 

  49. Siciliano B, Khatib O (2008) Springer handbook of robotics. Springer, New York

    Google Scholar 

  50. Fielding MR, Dunlop R, Damaren, Hamlet CJ (2001) Force/position controlled hexapod walker—design and systems. In: Proceeding of IEEE conference on control applications, Mexico City, pp 984–989

    Google Scholar 

  51. Ceccarelli M (2010) Fundamentals of mechanics of robotic manipulation. Springer, Dordrecht

    Google Scholar 

  52. Kazemi M, Gupta K, Mehrandezh M (2010) Path-planning for visual servoing: a review and issues. Visual servoing via advanced numerical methods. Springer, London, pp 189–207

    Google Scholar 

  53. Latombe JC (1991) Robot motion planning. Kluwer, Boston

    Google Scholar 

  54. Hoerger M, Kottege N, Bandyopadhyay T, Elfes A, Moghadam P (2014) Real-time stabilisation for hexapod robots. In: Proceedings of the international symposium on experimental robotics (ISER 2014), 15–18 June 2014. Marrakech and Essaouira, Morocco

    Google Scholar 

  55. Foley JD, Van Dam A, Feiner SK, Hughes JF (1990) Computer graphics: principles and practice, 2nd edn. Addison-Wesley, Reading

    Google Scholar 

  56. Carbone G, Ceccarelli M, Oliveira PJ, Saramago SF, Carvalho JCM (2008) An optimum path planning for Cassino parallel manipulator by using inverse dynamics. Robotica 26(2):229–239

    Article  Google Scholar 

  57. Vukobratovic M, Borovac B (2004) Zero moment point: thirty five years of its life. Int J Hum Robot 1(1):157–173

    Article  Google Scholar 

  58. Ghasempoor A, Sepehri N (1998) A measure of stability for mobile manipulators with application to heavy-duty hydraulic machines. ASME J Dyn Syst, Meas Control 120:360–370

    Article  Google Scholar 

  59. Abo-Shanab RF, Sepehri N (2005) Tip-over stability of manipulator-like mobile hydraulic machines. ASME J Dyn Syst, Meas, Control 127:295–301

    Google Scholar 

  60. Papadopoulos E, Rey DA (2000) The force-angle measure of tip-over stability margin for mobile manipulators. J Veh Syst Dyn 33:29–48

    Article  Google Scholar 

  61. Hirose S, Tsukagoshi H, Yoneda K (2001) Normalized energy stability margin and its contour of walking vehicles on rough terrain. In: Proceedings IEEE international conference on robotics and automation, Seoul, pp 181–186

    Google Scholar 

  62. Moosavian SAA, Dabiri A (2010) Dynamics and planning for stable motion of a hexapod robot. In: Proccedings of IEEE/ASME International Conference on Advanced Intelligent Mechatronics, Montreal 6–9 July 2010, pp 818–823

    Google Scholar 

  63. Lingelbach F (2004) Path planning using Probabilistic cell decomposition. In: Proceedings of IEEE international conference on robotics and automation ICRA’04

    Google Scholar 

  64. Chazelle B (1987) Advances in robotics. In: Schwartz JT, Yap CK (eds) Approximation and decomposition of shapes. Erlbaum Hillsdale, Hillsdale, pp 145–185

    Google Scholar 

  65. Khatib O (1985) Real-time obstacle avoidance for manipulators and mobile robots. In: Proceedings of the 1985 IEEE international conference on robotics and automation, pp 500–505

    Google Scholar 

  66. Volpe RA (1990) Real and artificial forces in the control of manipulators: theory and experiments. Carnegie Mellon University, Pittsburgh, The Robotics Institute

    Google Scholar 

  67. Takahashi O, Schilling RJ (1989) Motion planning in a plane using generalized Voronoi diagrams. IEEE Trans Robot Autom 5(2):143–150

    Article  Google Scholar 

  68. Garrido S, Moreno L, Lima PU (2011) Robot formation motion planning using fast marching. Robot Auton Syst 59(9):675–683

    Article  Google Scholar 

  69. Ahmad A, Nirjhar D (2008) Probabilistic roadmap method and real time gait changing technique implementation for travel time optimization on a designed six-legged robot . In: Proceedings of the 39nd ISR(International Symposium on Robotics), 15–17 October 2008

    Google Scholar 

  70. Gómez-Bravo F, Carbone G, Fortes JC (2012) Collision free trajectory planning for hybrid manipulators. Mechatronics 22:836–851. ISSN: 0957–4158, doi:10.1016/j.mechatronics.2012.05.001

  71. Belter D, Skrzypczynski P (2011) Integrated motion planning for a hexapod robot walking on rough terrain. In: Proceedings of 18th IFAC World Congress Milano (Italy) August 28–September 2, 2011

    Google Scholar 

  72. Ding X, Wang Z, Rovetta A, Zhu JM (2010) Locomotion analysis of hexapod robot. In: Miripour B (ed) Climbing and walking robots

    Google Scholar 

  73. Preumont A, Alexadre P, Ghuys D (1991) Gait analysis and implementation of a six leg walking machine. In: Proceedings of the fifth international conference on advanced robotics. Robots in unstructured environments (ICAR’91), vol 2. pp 941–945. Pisa, 19–22 June 1991

    Google Scholar 

  74. Ozguner F, Tsai SJ, McGhee RB (1984) An approach to the use of terrain-preview information in rough terrain locomotion by a hexapod walking machine. Int J Robot Res 3(2):134–146

    Article  Google Scholar 

  75. Wilson DM (1966) Insect walking. Annu Rev Entomol 11:103–122

    Article  Google Scholar 

  76. Collins JJ, Stewart I (1993) Hexapodal gaits and coupled nonlinear oscillator models. Biol Cybern 68: 287–298

    Google Scholar 

  77. Berns K, Dillman R (2001) From biology to industrial applications. In: 4th CLAWAR international conference of climbing and walking robots, Karlsruhe, pp 80–82

    Google Scholar 

  78. Todd DJ (1985) Walking machines-an introduction to legged robots. Anchor Press, Essex

    Google Scholar 

  79. Carbone G, Ceccarelli M (2004) A mechanical design of a low-cost easy-operation anthropomorphic wheeled leg for walking machines. Int J Robot Manag 9(2):3–8

    Google Scholar 

  80. Silva MF, Tenreiro Machado JA, Lopes AM (2003) Comparison of fractional and integer order control of an hexapod robot. In: Proceedings of DETC 03 ASME 2003 design engineering technical conference and computers information in engineering conference, Chicago, USA, 2–6 September 2003

    Google Scholar 

  81. Life Performance Research home page (2014)http://www.lp-research.com/. Accessed 18 Oct 2014

  82. Carbone G, Tedeschi F (2013) A low cost control architecture for Cassino Hexapod II. Int J Mech Control 14(01):19–24

    Google Scholar 

  83. Tedeschi F, Cafolla D, Carbone G (2014) Design and operation of Cassino hexapod. Int J Mech Control 15(01):19–25

    Google Scholar 

  84. Tedeschi F, Carbone G (2014) Design issues for hexapod walking robots. Robotics 3(2):181–206

    Article  Google Scholar 

  85. Julis K, Brepta R (1987) Mechanics II. Dynamics, SNTL, Praha

    Google Scholar 

  86. Frankovsky P, Hroncova D, Delyova I, Hudak P (2012) Inverse and forward dynamic analysis of two link manipulator. Procedia Eng 48:158–163

    Article  Google Scholar 

  87. Ogatha K (1978) System dynamics. Prentice Hall Inc, Englewood Cliffs

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giuseppe Carbone .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Tedeschi, F., Carbone, G. (2015). Hexapod Walking Robot Locomotion. In: Carbone, G., Gomez-Bravo, F. (eds) Motion and Operation Planning of Robotic Systems. Mechanisms and Machine Science, vol 29. Springer, Cham. https://doi.org/10.1007/978-3-319-14705-5_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-14705-5_15

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-14704-8

  • Online ISBN: 978-3-319-14705-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics