Skip to main content

Patient–Specific Parameter Estimation for a Transversely Isotropic Active Strain Model of Left Ventricular Mechanics

  • Conference paper
  • First Online:
Statistical Atlases and Computational Models of the Heart - Imaging and Modelling Challenges (STACOM 2014)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 8896))

Abstract

Computational models are valuable tools for understanding the mechanical function of the heart. In particular, the prospect of doing patient–specific simulations of heart function may have a significant impact on clinical practice. However, patient–specific simulations give rise to severe challenges related to model choices, parameter fitting and model validation. In this study we investigate parameter variability in a model of left ventricular mechanics applied to four different canine heart cases. The mechanics is modeled by a transversely isotropic active strain model, with two parameters adjusted to fit end diastolic and end systolic pressures and volumes. The chosen model is able to accurately reproduce these data, and enables very efficient parameter fitting. Visual inspection of the resulting deformed geometries also shows a reasonable match with the image based reference.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aguado-Sierra, J., Krishnamurthy, A., Villongco, C., Chuang, J., Howard, E., Gonzales, M.J., Omens, J., Krummen, D.E., Narayan, S., Kerckhoffs, R.C.P., McCulloch, A.D.: Patient-specific modeling of dyssynchronous heart failure: A case study. Progress in Biophysics and Molecular Biology 107(1), 147–155 (2011)

    Article  Google Scholar 

  2. Alford, P.W., Feinberg, A.W., Sheehy, S.P., Parker, K.K.: Biohybrid thin films for measuring contractility in engineered cardiovascular muscle. Biomaterials 31(13), 3613–3621 (2010)

    Article  Google Scholar 

  3. Amestoy, P.R., Duff, I.S., L’Excellent, J.-Y., Koster, J.: MUMPS: a general purpose distributed memory sparse solver. In: Sørevik, T., Manne, F., Gebremedhin, A.H., Moe, R. (eds.) PARA 2000. LNCS, vol. 1947, pp. 121–130. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  4. Arnold, D.N., Brezzi, F., Fortin, M.: A stable finite element for the stokes equations. Calcolo 21(4), 337–344 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  5. Bonet, J., Wood, R.: Nonlinear continuum mechanics for finite element analysis. Cambridge University Press (1997)

    Google Scholar 

  6. Feinberg, A.W., Feigel, A., Shevkoplyas, S.S., Sheehy, S., Whitesides, G.M., Parker, K.K.: Muscular thin films for building actuators and powering devices. Science 317(5843), 1366–1370 (2007)

    Article  Google Scholar 

  7. Geuzaine, C., Remacle, J.-F.: Gmsh: A three-dimensional finite element mesh generator with built-in pre- and post-processing facilities. Int. J. Numer. Meth. Eng. 11(79), 1309–1331 (2009)

    Article  MathSciNet  Google Scholar 

  8. Holzapfel, G.A., Ogden, R.W.: Constitutive modelling of passive myocardium: a structurally based framework for material characterization. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 367(1902), 3445–3475 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  9. Humphrey, J.D., Yin, F.C.P.: On constitutive relations and finite deformations of passive cardiac tissue: I. a pseudostrain-energy function. Journal of Biomechanical Engineering 109(4), 298–304 (1987)

    Article  Google Scholar 

  10. Kuznetsov, Y.: Elements of applied bifurcation theory, vol. 112. Springer (1998)

    Google Scholar 

  11. LeGrice, I., Hunter, P., Young, A., Smaill, B.: The architecture of the heart: a data-based model. Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences 359(1783), 1217–1232 (2001)

    Article  MATH  Google Scholar 

  12. Logg, A., Mardal, K.-A., Wells, G.N., et al.: Automated Solution of Differential Equations by the Finite Element Method. Springer (2012)

    Google Scholar 

  13. Nardinocchi, P., Teresi, L.: On the active response of soft living tissues. Journal of Elasticity 88(1), 27–39 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  14. Niederer, S.A., Plank, G., Chinchapatnam, P., Ginks, M., Lamata, P., Rhode, K.S., Rinaldi, C.A., Razavi, R., Smith, N.P.: Length-dependent tension in the failing heart and the efficacy of cardiac resynchronization therapy. Cardiovascular Research 89(2), 336–343 (2011)

    Article  Google Scholar 

  15. Pezzuto, S., Ambrosi, D., Quarteroni, A.: An orthotropic active-strain model for the myocardium mechanics and its numerical approximation. European Journal of Mechanics-A/Solids (2014)

    Google Scholar 

  16. Remacle, J.-F., Geuzaine, C., Compère, G., Marchandise, E.: High-quality surface remeshing using harmonic maps. International Journal for Numerical Methods in Engineering 83(4), 403–425 (2010)

    MathSciNet  MATH  Google Scholar 

  17. Rumpel, T., Schweizerhof, K.: Volume-dependent pressure loading and its influence on the stability of structures. International Journal for Numerical Methods in Engineering 56(2), 211–238 (2003)

    Article  MATH  Google Scholar 

  18. Streeter, D.D., Spotnitz, H.M., Patel, D.P., Ross, J., Sonnenblick, E.H.: Fiber orientation in the canine left ventricle during diastole and systole. Circulation Research 24(3), 339–347 (1969)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Simone Pezzuto .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Gjerald, S., Hake, J., Pezzuto, S., Sundnes, J., Wall, S.T. (2015). Patient–Specific Parameter Estimation for a Transversely Isotropic Active Strain Model of Left Ventricular Mechanics. In: Camara, O., Mansi, T., Pop, M., Rhode, K., Sermesant, M., Young, A. (eds) Statistical Atlases and Computational Models of the Heart - Imaging and Modelling Challenges. STACOM 2014. Lecture Notes in Computer Science(), vol 8896. Springer, Cham. https://doi.org/10.1007/978-3-319-14678-2_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-14678-2_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-14677-5

  • Online ISBN: 978-3-319-14678-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics