Skip to main content

Homogenized Elastic-Viscoplastic Behavior of Thick Perforated Plates with Pore Pressure

  • Chapter
  • First Online:
Inelastic Behavior of Materials and Structures Under Monotonic and Cyclic Loading

Part of the book series: Advanced Structured Materials ((STRUCTMAT,volume 57))

  • 1117 Accesses

Abstract

The homogenized elastic-viscoplastic behavior of thick perforated plates with pore pressure is investigated for macro-material modeling. To this end, homogenized stress-strain relations of a periodic unit cell of pore-pressurized thick perforated plates under uniaxial and multiaxial loadings are analyzed using a finite element method with periodic boundary conditions. It is assumed in the analysis that the base metal of the perforated plates exhibits elastic-viscoplasticity based on Hooke’s law and Norton’s power law and has the material parameters of Mod. 9Cr-1Mo steel at 550 \(^\circ \)C. The resulting homogenized stress-strain relations are simulated using a macro-material model in which the pore-viscoplastic macro-strain rate is represented as an anisotropic power function of Terzaghi’s effective stress. It is demonstrated that this macro-material model suitably represents the macro-anisotropy, macro-volumetric compressibility, and pore pressure effect revealed in the viscoplastic range in the finite element homogenization analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ando M, Takasho H, Kawasaki N, Kasahara N (2013) Stress mitigation design of a tubesheet by considering the thermal stress inducement mechanism. J Press Vessel Technol 135(6):061207 (10 pages)

    Google Scholar 

  • Asada T, Tanaka Y, Ohno N (2009) Two-scale and full-scale analyses of elastoplastic honeycomb blocks subjected to flat-punch indentation. Int J Solids Struct 46(7–8):1755–1763

    Article  MATH  Google Scholar 

  • ASME (2007) Appendix A-8000. Stresses in perforated flat plates. In: 2007 ASME boiler and pressure vessel code, Section III, Rules for construction of nuclear facility components,Division 1

    Google Scholar 

  • Badiche X, Forest S, Guibert T, Bienvenu Y, Bartout JD, Ienny P, Croset M, Bernet H (2000) Mechanical properties and non-homogeneous deformation of open-cell nickel foams: application of the mechanics of cellular solids and of porous materials. Mater Sci Eng A289(1–2):276–288

    Article  Google Scholar 

  • Biot MA (1941) General theory of three-dimensional consolidation. J Appl Phys 12(2):155–164

    Article  MATH  Google Scholar 

  • Deshpande VS, Fleck NA, Ashby MF (2001) Effective properties of the octet-truss lattice material. J Mech Phys Solids 49(8):1747–1769

    Article  MATH  Google Scholar 

  • Dormieux L, Molinari A, Kondo D (2002) Micromechanical approach to the behavior of poroelastic materials. J Mech Phys Solids 50(10):2203–2231

    Article  MATH  Google Scholar 

  • Dormieux L, Kondo D, Ulm FJ (2006) Microporomechanics. Wiley, Chichester

    Book  MATH  Google Scholar 

  • Feyel F, Chaboche JL (2000) \({\text{ FE }}^{2}\) multiscale approach for modelling the elastoviscoplastic behaviour of long fibre SiC/Ti composite materials. Comput Methods Appl Mech Eng 183(3–4):309–330

    Article  MATH  Google Scholar 

  • Gordon JL, Jones DP, Banas D, Hutula DN (2002) A collapse surface for a perforated plate with an equilateral triangular array of penetrations. J Press Vessel Technol 124(2):201–206

    Article  Google Scholar 

  • Hill R (1967) The essential structure of constitutive laws for metal composites and polycrystals. J Mech Phys Solids 15(2):79–95

    Article  Google Scholar 

  • Igari T, Setoguchi K, Nomura S (1986) Simplified creep analysis of perforated plates under steady creep condition. Nucl Eng Des 97(2):161–166

    Article  Google Scholar 

  • Igari T, Tokiyoshi T, Mizokami Y (2001) Prediction of macroscopic and local stress-strain behavior of perforated plates under primary and secondary creep conditions. JSME Int J, Ser A 44(2):237–245

    Article  Google Scholar 

  • Ikenoya K, Ohno N, Kasahara N (2012) Homogenized elasto-visocoplastic material modeling of thick perforated plates at high temperature. Mater High Temp 29(4):322–329

    Article  Google Scholar 

  • Kasahara N, Takasho H, Kawasaki N, Ando M (2008) Effective stress ratio of triangular pattern perforated plates. In: Proceedings of ASME 2008 pressure vessels and piping conference. American Society of Mechanical Engineers, vol 2, New York, pp 295–303

    Google Scholar 

  • Khatam H, Pindera MJ (2011) Plastic deformation modes in perforated sheets and their relation to yield and limit surfaces. Int J Plast 27(10):1537–1559

    Article  MATH  Google Scholar 

  • Khatam H, Chen L, Pindera MJ (2009) Elastic and plastic response of perforated metal sheets with different porosity architectures. J Eng Mater Technol 131(3):031015 (14 pages)

    Google Scholar 

  • Michel JC, Moulinec H, Suquet P (1999) Effective properties of composite materials with periodic microstructure: a computational approach. Comput Methods Appl Mech Eng 172(1–4):109–143

    Article  MATH  MathSciNet  Google Scholar 

  • O’Donnell WJ, Porowski J (1973) Yield surfaces for perforated materials. J Appl Mech 40(1):263–270

    Article  Google Scholar 

  • Ohno N, Wang JD (1993) Kinematic hardening rules with critical state of dynamic recovery, part ii: application to experiments of ratchetting behavior. Int J Plast 9(3):391–403

    Google Scholar 

  • Ohno N, Wu X, Matsuda T (2000) Homogenized properties of elastic-viscoplastic composites with periodic internal structures. Int J Mech Sci 42(8):1519–1536

    Article  MATH  Google Scholar 

  • Ohno N, Matsuda T, Wu X (2001) A homogenization theory for elastic-viscoplastic composites with point symmetry of internal distributions. Int J Solids Struct 38(16):2867–2878

    Article  MATH  MathSciNet  Google Scholar 

  • Ohno N, Ikenoya K, Okumura D, Matsuda T (2012) Homogenized elastic-viscoplastic behavior of anisotropic open-porous bodies with pore pressure. Int J Solids Struct 49(19–20):2799–2806

    Article  Google Scholar 

  • Porowski J, O’Donnell WJ (1974) Effective plastic constants for perforated materials. J Press Vessel Technol 96(3):234–241

    Article  Google Scholar 

  • Reinhardt WD (2001) Yield criteria for the elastic-plastic design of tubesheets with triangular penetration pattern. J Press Vessel Technol 123(1):118–123

    Article  Google Scholar 

  • Suquet PM (1987) Elements of homogenization for inelastic solid mechanics. In: Sanchez-Palencia E, Zaoui A (eds) Homogenization techniques for composite media. Lecture Notes in Physics,vol 272. Springer, Berlin, pp 193–278

    Google Scholar 

  • Terzaghi K (1943) Theoretical soil mechanics. Wiley, New York

    Book  Google Scholar 

  • Tsuda M, Ohno N (2011) Duplex model for homogenized elastic-viscoplastic behavior of plate-fin structures at high temperatures. Int J Plast 27(10):1560–1576

    Article  MATH  Google Scholar 

  • Tsuda M, Takemura E, Asada T, Ohno N, Igari T (2010) Homogenized elastic-viscoplastic behavior of plate-fin structures at high temperatures: Numerical analysis and macroscopic constitutive modeling. Int J Mech Sci 52(5):648–656

    Article  Google Scholar 

  • Uragami K, Nakamura K, Asada K, Kano T (1981) Simplified inelastic analysis method of ligament plates (in Japanese). J High Press Inst Jpn 19(2):57–65

    Google Scholar 

  • Vincent PG, Monerie Y, Suquet P (2009) Porous materials with two populations of voids under internal pressure: I. instantaneous constitutive relations. Int J Solids Struct 46(3–4):480–506

    Article  MATH  Google Scholar 

  • von Mises R (1928) Mechanik der plastischen Formänderung von Kristallen. Zeitschrift für Angewandte Mathematik und Mechanik 8(3):161–185

    Article  MATH  Google Scholar 

  • Wu X, Ohno N (1999) A homogenization theory for time-dependent nonlinear composites with periodic internal structures. Int J Solids Struct 36(33):4991–5012

    Article  MATH  MathSciNet  Google Scholar 

  • Xue ZY, Hutchinson JW (2004) Constitutive model for quasi-static deformation of metallic sandwich cores. Int J Numer Methods Eng 61(13):2205–2238

    Article  MATH  Google Scholar 

  • Yaguchi M, Takahashi Y (2005) Ratchetting of viscoplastic material with cyclic softening. Part 1: experiments on modified 9Cr-1Mo steel. Int J Plast 21(1):43–65

    Article  MATH  Google Scholar 

Download references

Acknowledgments

This study was partially supported by a JSPS Grant-in-Aid for Scientific Research (B) (No. 24360045) and the Micro-Nano Global COE project of Nagoya University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nobutada Ohno .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Ikenoya, K., Ohno, N., Kasahara, N. (2015). Homogenized Elastic-Viscoplastic Behavior of Thick Perforated Plates with Pore Pressure. In: Altenbach, H., Brünig, M. (eds) Inelastic Behavior of Materials and Structures Under Monotonic and Cyclic Loading. Advanced Structured Materials, vol 57. Springer, Cham. https://doi.org/10.1007/978-3-319-14660-7_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-14660-7_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-14659-1

  • Online ISBN: 978-3-319-14660-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics