Skip to main content

The Contribution of Lianas to Forest Ecology, Diversity, and Dynamics

  • Chapter
Biodiversity of Lianas

Part of the book series: Sustainable Development and Biodiversity ((SDEB,volume 5))

Abstract

Lianas are a common component of forests worldwide and they contribute to forest ecology, diversity, and dynamics. Lianas can have both positive and negative effects in forests. Lianas can be an important resource for animals, as food (in the form of nectar, pollen, fruits, leaves, or sap), providing nesting sites, shelter and, by climbing among many tree crowns, lianas can provide aerial highways for many animal species. By contrast, lianas also compete intensively with trees, reducing tree recruitment, growth, reproduction, and survival, as well as tree diversity and forest-level carbon sequestration. While the inclusion of lianas in ecological studies have lagged behind that of trees, over the past three decades, the study of liana ecology has grown significantly, revealing many important contributions of lianas to forest ecology. In this chapter, I review the state of knowledge about the ecology of lianas and their contribution to forest ecology, diversity, and dynamics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alvarez-Cansino L, Schnitzer SA, Reid J, Powers JS (2015) Liana competition with tropical trees varies with seasonally, but not with tree species identity. Ecology (in press)

    Google Scholar 

  • Andrade JL, Meinzer FC, Goldstein G, Schnitzer SA (2005) Water uptake and transport in lianas and co-occurring trees of a seasonally dry tropical forest. Trees Struct Funct 19:282–289

    Article  Google Scholar 

  • Arroyo-Rodriguez V, Asensio N, Dunn JC, Cristobal-Azkarate J, Gonzalez-Zamora A (2015) Use of lianas by primates: more than a food resource. In: Schnitzer SA, Bongers F, Burnham RJ, Putz FE (eds) The ecology of lianas. Wiley-Blackwell, Oxford, pp 407–426

    Google Scholar 

  • Brokaw NVL, Busing RT (2000) Niche versus chance and tree diversity in forest gaps. Trends Ecol Evol 15:183–188

    Article  PubMed  Google Scholar 

  • Cai Z-Q, Schnitzer SA, Bongers F (2009) Seasonal differences in leaf-level physiology give lianas a competitive advantage over trees in a tropical seasonal forest. Oecologia 161:25–33

    Article  PubMed Central  PubMed  Google Scholar 

  • Chave J, Riéra B, Dubois M (2001) Estimation of biomass in a neotropical forest in French Guiana: spatial and temporal variability. J Trop Ecol 17:79–96

    Article  Google Scholar 

  • Chen Y-J, Cao K-F, Schnitzer SA, Fan Z-X, Zhang J-L, Bongers F (2015) Water-use advantage of lianas over trees in seasonal tropical forests. New Phytol 205:128–136

    Article  PubMed  Google Scholar 

  • Clark DB, Clark DA (1990) Distribution and effects on tree growth of lianas and woody hemiepiphytes in a Costa Rican tropical wet forest. J Trop Ecol 6:321–331

    Article  Google Scholar 

  • Dalling JW, Schnitzer SA, Baldeck C, Harms KE, John R, Mangan SA, Lobo E, Yavitt JB, Hubbell SP (2012) Resource-based habitat associations in a neotropical liana community. J Ecol 100:1174–1182

    Article  Google Scholar 

  • DeWalt SJ, Schnitzer SA, Chave J, Bongers F, Burnham RJ, Cai ZQ, Chuyong G, Clark DB, Ewango CEN, Gerwing JJ, Gortaire E, Hart T, Ibarra-Manríquez G, Ickes K, Kenfack D, Macía MJ, Makana JR, Mascaro J, Martínez-Ramos M, Moses S, Muller-Landau HC, Parren MPE, Parthasarathy N, Pérez-Salicrup DR, Putz FE, Romero-Saltos H, Thomas D (2010) Annual rainfall and seasonality predict pan-tropical patterns of liana density and basal area. Biotropica 42:309–317

    Article  Google Scholar 

  • DeWalt SJ, Schnitzer SA, Alves LE, Bongers F, Burnham RJ, Cai ZQ, Carson WP, Chave J, Chuyong G, Costa F, Ewango CEN, Gallagher RV, Gerwing JJ, Gortaire E, Hart T, Ibarra-Manríquez G, Ickes K, Kenfack D, Letcher SG, Macía MJ, Makana JR, Martínez-Ramos M, Mascaro J, Muthumperumal C, Muthuramkumar S, Nogueira A, Parren MPE, Parthasarathy N, Pérez-Salicrup DR, Putz FE, Romero-Saltos H, Reddy MS, Sainge MN, Thomas D, van Melis J (2015) Biogeographical patterns of liana abundance and diversity. In: Schnitzer SA, Bongers F, Burnham RJ, Putz FE (eds) The ecology of lianas. Wiley-Blackwell Publishing, Oxford, pp 131–148

    Google Scholar 

  • Durán SM, Gianoli E (2013) Carbon stocks in tropical forests decrease with liana density. Biol Lett 9:20130301

    Article  PubMed Central  PubMed  Google Scholar 

  • Garrido-Pérez EI, Dupuy JM, Durán-García R, Gerold G, Schnitzer SA, Ucan-May M (2008) Structural effects of lianas and hurricane Wilma on trees in Yucatan peninsula, Mexico. J Trop Ecol 24:559–562

    Article  Google Scholar 

  • Gianoli E (2004) Evolution of a climbing habit promotes diversification in climbing plants. Proc R Soc Lond B 271:2011–2015

    Article  Google Scholar 

  • Grauel WT, Putz FE (2004) Effects of lianas on growth and regeneration of Prioria copaifera in Darien, Panama. For Ecol Manage 190:99–108

    Article  Google Scholar 

  • Ingwell LL, Wright SJ, Becklund KK, Hubbell SP, Schnitzer SA (2010) The impact of lianas on 10 years of tree growth and mortality on Barro Colorado Island, Panama. J Ecol 98:879–887

    Article  Google Scholar 

  • Jimenez-Castillo M, Wiser S, Lusk C (2007) Elevational parallels of latitudinal variation in the proportion of lianas in woody floras. J Biogeogr 34:163–168

    Article  Google Scholar 

  • Kainer KA, Wadt LHO, Staudhammer CL (2014) Testing a silvicultural recommendation: Brazil nut responses 10 years after liana cutting. J Appl Ecol. doi:10.1111/1365-2664.12231

    Google Scholar 

  • Kurzel BP, Schnitzer SA, Carson WP (2006) Predicting liana crown location from stem diameter in three Panamanian forests. Biotropica 38:262–266

    Article  Google Scholar 

  • Ladwig LM, Meiners SJ (2015) The role of lianas in temperate tree communities. In: Schnitzer SA, Bongers F, Burnham RJ, Putz FE (eds) The ecology of lianas. Wiley-Blackwell, Oxford, pp 188–202

    Google Scholar 

  • Lambert TD, Halsey M (2015) Relationship between lianas and arboreal mammals: examining the Emmons-Gentry hypothesis. In: Schnitzer SA, Bongers F, Burnham RJ, Putz FE (eds) The ecology of lianas. Wiley-Blackwell Publishing, Oxford, pp 398–406

    Google Scholar 

  • Ledo A, Schnitzer SA (2014) Disturbance and clonal reproduction determine liana distribution and maintain liana diversity in a tropical forest. Ecology 95:2169–2178

    Article  PubMed  Google Scholar 

  • Michel NL, Robinson D, Sherry TW (2015) Liana-bird relationships: a review. In: Schnitzer SA, Bongers F, Burnham RJ, Putz FE (eds) The ecology of lianas. Wiley-Blackwell Publishing, Oxford, pp 362–397

    Google Scholar 

  • Parthasarathy N, Muthuramkumar S, Muthumperumal C, Vivek P, Ayyappan N, Reddy MS (2015) Liana composition and diversity among tropical forest types on peninsular India. In: Schnitzer SA, Bongers F, Burnham RJ, Putz FE (eds) The ecology of lianas. Wiley-Blackwell Publishing, Oxford, pp 36–49

    Google Scholar 

  • Phillips OL, Vasquez Martinez R, Mendoza AM, Baker TR, Vargas PN (2005) Large lianas as hyperdynamic elements of the tropical forest canopy. Ecology 86:1250–1258

    Article  Google Scholar 

  • Powers JS (2015) Reciprocal interactions between lianas and forest soil. In: Schnitzer SA, Bongers F, Burnham RJ, Putz FE (eds) The ecology of lianas. Wiley-Blackwell, Oxford, pp 175–187

    Google Scholar 

  • Putz FE (1984) The natural history of lianas on Barro Colorado Island, Panama. Ecology 65:1713–1724

    Article  Google Scholar 

  • Restom TG, Nepstad DC (2004) Seedling growth dynamics of a deeply-rooting liana in a secondary forest in eastern Amazonia. For Ecol Manage 190:109–118

    Article  Google Scholar 

  • Schnitzer SA (2005) A mechanistic explanation for global patterns of liana abundance and distribution. Am Nat 166:262–276

    Article  PubMed  Google Scholar 

  • Schnitzer SA (2015) Increasing liana abundance and biomass in neotropical forests: causes and consequences. In: Schnitzer SA, Bongers F, Burnham RJ, Putz FE (eds) The ecology of lianas. Wiley-Blackwell Publishing, Oxford, pp 451–464

    Google Scholar 

  • Schnitzer SA, Carson WP (2000) Have we missed the forest because of the trees? Trends Ecol Evol 15:376–377

    Article  Google Scholar 

  • Schnitzer SA, Bongers F (2002) The ecology of lianas and their role in forests. Trends Ecol Evol 17:223–230

    Article  Google Scholar 

  • Schnitzer SA, Bongers F (2011) Increasing liana abundance and biomass in tropical forests: emerging patterns and putative mechanisms. Ecol Lett 14:397–406

    Article  PubMed  Google Scholar 

  • Schnitzer SA, Carson WP (2001) Treefall gaps and the maintenance of species diversity in a tropical forest. Ecology 82:913–919

    Article  Google Scholar 

  • Schnitzer SA, Carson WP (2010) Lianas suppress tree regeneration and diversity in treefall gaps. Ecol Lett 13:849–857

    Article  PubMed  Google Scholar 

  • Schnitzer SA, Dalling JW, Carson WP (2000) The impact of lianas on tree regeneration in tropical forest canopy gaps: evidence for an alternative pathway of gap-phase regeneration. J Ecol 88:655–666

    Article  Google Scholar 

  • Schnitzer SA, Kuzee M, Bongers F (2005) Disentangling above- and below-ground competition between lianas and trees in a tropical forest. J Ecol 93:1115–1125

    Article  Google Scholar 

  • Schnitzer SA, Mangan SA, Dalling JW, Baldeck CA, Hubbell SP, Ledo A, Muller-Landau H, Tobin MF, Aguilar S, Brassfield D, Hernandez A, Lao S, Perez R, Valdes O, Yorke SR (2012) Liana abundance, diversity, and distribution on Barro Colorado Island, Panama. PLoS One 7:e52114

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Schnitzer SA, van der Heijden GMF, Mascaro J, Carson WP (2014) Lianas reduce biomass accumulation in a tropical forest. Ecology 95:3008–3017

    Article  Google Scholar 

  • Schnitzer SA, Bongers F, Burnham RJ, Putz FE (eds) (2015a) The ecology of lianas. Wiley-Blackwell, Oxford, 504 pp. ISBN 978-1-118-39249-2

    Google Scholar 

  • Schnitzer SA, Putz FE, Bongers F, Kroening K (2015b) The past, present, and potential future of liana ecology. In: Schnitzer SA, Bongers F, Burnham RJ, Putz FE (eds) The ecology of lianas. Wiley-Blackwell Publishing, Oxford, pp 3–12

    Google Scholar 

  • Swaine MD, Grace J (2007) Lianas may be favoured by low rainfall: evidence from Ghana. Plant Ecol 192:271–276

    Article  Google Scholar 

  • Thomas D, Burnham RJ, Chuyong G, Kenfack D, Nsangy Sainge M (2015) Liana abundance and diversity in Cameroon’s Korup National Park. In: Schnitzer SA, Bongers F, Burnham RJ, Putz FE (eds) Ecology of lianas. Wiley-Blackwell, Oxford, pp 13–22

    Google Scholar 

  • Tobin MF, Wright AJ, Mangan SA, Schnitzer SA (2012) Lianas have a greater competitive effect than trees of similar biomass on tropical canopy trees. Ecosphere 3, Article 20: 1–11. http://dx.doi.org/10.1890/ES11-00322.1

  • van der Heijden GMF, Phillips OL (2009) Liana infestation impacts tree growth in a lowland tropical moist forest. Biogeosciences 6:2217–2226

    Article  Google Scholar 

  • van der Heijden GMF, Schnitzer SA, Powers JS, Phillips OL (2013) Liana impacts on carbon cycling, storage and sequestration in tropical forests. Biotropica 45:682–692

    Article  Google Scholar 

  • van der Heijden G, Phillips O, Schnitzer SA (2015) Effects of lianas on forest level biomass. In: Schnitzer SA, Bongers F, Burnham RJ, Putz FE (eds) The ecology of lianas. Wiley-Blackwell Publishing, Oxford, pp 164–174

    Google Scholar 

  • Wyka TP, Oleksyn J, Karolewski P, Schnitzer SA (2013) Phenotypic correlates of the lianescent growth form – a review. Ann Bot 112:1667–1681

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Yanoviak S (2015) Effects of lianas on canopy arthropod community structure. In: Schnitzer SA, Bongers F, Burnham RJ, Putz FE (eds) The ecology of lianas. Wiley-Blackwell, Oxford, pp 345–361

    Google Scholar 

  • Zhu S-D, Cao K-F (2009) Hydraulic properties and photosynthetic rates in co-occurring lianas and trees in a seasonal tropical rainforest in southwestern China. Plant Ecol 204:295–304

    Article  Google Scholar 

Download references

Acknowledgments

This work was made possible by financial support from US National Science Foundation grants DEB-0613666, NSF-DEB 0845071, and NSF-DEB 1019436. I thank N. Parthasarathy for inviting me to write this chapter and N. Parthasarathy and A Ercoli, for helpful comments on the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stefan A. Schnitzer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Schnitzer, S.A. (2015). The Contribution of Lianas to Forest Ecology, Diversity, and Dynamics. In: Parthasarathy, N. (eds) Biodiversity of Lianas. Sustainable Development and Biodiversity, vol 5. Springer, Cham. https://doi.org/10.1007/978-3-319-14592-1_9

Download citation

Publish with us

Policies and ethics