Skip to main content

Protein Kinase CK2: A Window into the Posttranslational Regulation of the E(spl)/HES Repressors from Invertebrates and Vertebrates

  • Chapter
  • First Online:
Protein Kinase CK2 Cellular Function in Normal and Disease States

Abstract

The basic helix-loop-helix (bHLH) repressors encoded by the Drosophila Enhancer of split Complex (E(spl)C) are the terminal effectors of Notch signaling, a pathway that is highly conserved through Metazoa. Although the E(spl) proteins are structurally conserved, one region that exhibits length and sequence heterogeneity is the C-terminal domain (CtD), which links the b/HLH domains to the terminal WRPW tetrapeptide, facilitating recruitment of the corepressor Groucho. Consequently, the CtD has been largely thought to act as a nonfunctional linker. However, studies are revealing that this region is not only key to controlling E(spl) repressor activity (cis-inhibition) but is subject to sophisticated regulation through posttranslational modifications (PTM). These modifications are mediated by protein kinases, phosphatase(s), and accessory factors, which together regulate phospho-occupancy, conferring spatial and temporal control over E(spl) protein activities and levels. We suggest that E(spl)M8 is a paradigm for understanding the regulation of mammalian E(spl) homologues by PTM. In the case of E(spl)M8, repressor activity first requires multisite phosphorylation led by CK2, with steady state control provided by the phosphatase PP2A. The later participation of additional kinases would activate a phosphodegron, enabling timely clearance of the protein. Controlled activation and deactivation may both be essential for repeated rounds of Notch signaling, employing different E(spl) repressors. This mode of regulation likely impacts a preponderance of E(spl) members, underscoring its importance to Notch signaling. PTM therefore imposes greater functional diversity among the E(spl) proteins, which are themselves differentially expressed during development. Aberrant posttranslational modification of the human E(spl) homologues, the HES proteins, may underlie diverse developmental disorders and cancer, both of which have been linked to defects in Notch signaling.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Pinna LA (2002) Protein kinase CK2: a challenge to canons. J Cell Sci 115(Pt 20):3873–3878

    CAS  PubMed  Google Scholar 

  2. Litchfield DW (2003) Protein kinase CK2: structure, regulation and role in cellular decisions of life and death. Biochem J 369:1–15

    PubMed Central  CAS  PubMed  Google Scholar 

  3. Issinger OG (1993) Casein kinases: pleiotropic mediators of cellular regulation. Pharmacol Ther 59:1–30

    CAS  PubMed  Google Scholar 

  4. Bidwai AP, Hanna DE, Glover CVC (1992) The free catalytic subunit of casein kinase II is not toxic in vivo. J Biol Chem 267:18790–18796

    CAS  PubMed  Google Scholar 

  5. Kuenzel EA, Krebs EG (1985) A synthetic substrate specific for casein kinase II. Proc Natl Acad Sci U S A 82:737–741

    PubMed Central  CAS  PubMed  Google Scholar 

  6. Kuenzel EA et al (1987) Substrate specificity determinants for casein kinase II as deduced from studies with synthetic peptides. J Biol Chem 262:9136–9140

    CAS  PubMed  Google Scholar 

  7. Hrubey TW, Roach PJ (1990) Phosphoserine in peptide substrates can specify casein kinase II action. Biochem Biophys Res Commun 172:190–196

    CAS  PubMed  Google Scholar 

  8. Meier UT, Blobel G (1992) Nopp 140 shuttles on tracks between nucleolus and cytoplasm. Cell 70:127–138

    CAS  PubMed  Google Scholar 

  9. Wilson LK et al (1997) Casein kinase II catalyzes tyrosine phosphorylation of yeast nucleolar immunophilin Fpr3. J Biol Chem 272:12961–12967

    CAS  PubMed  Google Scholar 

  10. Marin O et al (1999) Tyrosine versus serine/threonine phosphorylation by protein kinase casein kinase-2. J Biol Chem 274:29260–29265

    CAS  PubMed  Google Scholar 

  11. Kennedy EP (1992) Sailing to Byzantium. Annu Rev Biochem 61:1–28

    CAS  PubMed  Google Scholar 

  12. Burnett G, Kennedy EP (1954) The enzymatic phosphorylation of proteins. J Biol Chem 211:969–980

    CAS  PubMed  Google Scholar 

  13. Salvi M et al (2009) Extraordinary pleiotropy of protein kinase CK2 revealed by weblogo phosphoproteome analysis. Biochim Biophys Acta 1793(5):847–859

    CAS  PubMed  Google Scholar 

  14. Meggio F, Pinna LA (2003) One-thousand-and-one substrates of protein kinase CK2. FASEB J 17:349–368

    CAS  PubMed  Google Scholar 

  15. Bidwai AP (2000) Structure and function of casein kinase II. Recent Res Devel Mol Cell Biol 1:51–82

    CAS  Google Scholar 

  16. Glover CVC (1998) On the physiological role of casein kinase II in Saccharomyces cerevisiae. Prog Nucleic Acid Res Mol Biol 59:95–133

    CAS  PubMed  Google Scholar 

  17. Padmanabha R et al (1990) Isolation, sequencing, and disruption of the yeast CKA2 gene: casein kinase II is essential for viability in Saccharomyces cerevisiae. Mol Cell Biol 10:4089–4099

    PubMed Central  CAS  PubMed  Google Scholar 

  18. Hanna DE, Rethinaswamy A, Glover CVC (1995) Casein kinase II is required for cell cycle progression during G1 and G2/M in Saccharomyces cerevisiae. J Biol Chem 270:25905–25914

    CAS  PubMed  Google Scholar 

  19. Bandhakavi S et al (2003) Genetic interactions among ZDS1,2, CDC37, and protein kinase CK2 in Saccharomyces cerevisiae. FEBS Lett 554(3):295–300

    CAS  PubMed  Google Scholar 

  20. Pepperkok R et al (1994) Casein kinase II is required for transition of G0/G1, early G1, and G1/S phases of the cell cycle. J Biol Chem 269:6986–6991

    CAS  PubMed  Google Scholar 

  21. Ghavidel A, Schultz MC (2001) TATA binding protein-associated CK2 transduces DNA damage signals to the RNA polymerase II transcriptional machinery. Cell 106:575–584

    CAS  PubMed  Google Scholar 

  22. Luscher B et al (1990) Myb DNA binding inhibited by phosphorylation at a site deleted during oncogenic activation. Nature 344:517–522

    CAS  PubMed  Google Scholar 

  23. Zhao T, Eissenberg JC (1999) Phosphorylation of heterochromatin protein 1 by casein kinase II is required for efficient heterochromatin binding in Drosophila. J Biol Chem 274:15095

    CAS  PubMed  Google Scholar 

  24. Tamaru T et al (2009) CK2alpha phosphorylates BMAL1 to regulate the mammalian clock. Nat Struct Mol Biol 16(4):446–448

    CAS  PubMed  Google Scholar 

  25. Akten B et al (2003) A role for CK2 in the Drosophila circadian oscillator. Nat Neurosci 6:251–257

    CAS  PubMed  Google Scholar 

  26. Lin JM et al (2002) A role for casein kinase 2alpha in the Drosophila circadian clock. Nature 420(6917):816–820

    CAS  PubMed  Google Scholar 

  27. Sanz-Clemente A et al (2010) Casein kinase 2 regulates the NR2 subunit composition of synaptic NMDA receptors. Neuron 67(6):984–996

    PubMed Central  CAS  PubMed  Google Scholar 

  28. ole-MoiYoi OK (1989) Theileria parva: an intracellular protozoan parasite that induces reversible lymphocyte transformation. Exp Parasitol 69:204–210

    CAS  PubMed  Google Scholar 

  29. ole-MoiYoi OK et al (1993) Evidence for the induction of casein kinase II in bovine lymphocytes transformed by the intracellular protozoan parasite Theileria parva. EMBO J 12:1621–1631

    PubMed Central  CAS  PubMed  Google Scholar 

  30. ole-MoiYoi OK et al (1992) Cloning and characterization of the casein kinase II alpha subunit gene from the lymphocyte-transforming intracellular protozoan parasite Theileria parva. Biochemistry 31:6193–6202

    CAS  PubMed  Google Scholar 

  31. ole-MoiYoi OK (1995) Casein kinase II in theileriosis. Science 267:834–836

    CAS  PubMed  Google Scholar 

  32. Kelliher MA, Seldin DC, Leder P (1996) Tal-1 induces T cell acute lymphoblastic leukemia accelerated by casein kinase II alpha. EMBO J 15:5160–5166

    PubMed Central  CAS  PubMed  Google Scholar 

  33. Seldin DC, Leder P (1995) Casein kinase II alpha transgene-induced murine lymphoma: relation to theileriosis in cattle. Science 267:894–897

    CAS  PubMed  Google Scholar 

  34. Ahmed K (1999) Nuclear matrix and protein kinase CK2 signaling. Crit Rev Eukaryot Gene Expr 9:329–336

    CAS  PubMed  Google Scholar 

  35. Munstermann U et al (1990) Casein kinase II is elevated in solid human tumours and rapidly proliferating non-neoplastic tissue. Eur J Biochem 189:251–257

    CAS  PubMed  Google Scholar 

  36. Prowald K, Fischer H, Issinger OG (1984) Enhanced casein kinase II activity in human tumor cell cultures. FEBS Lett 176:479–483

    CAS  PubMed  Google Scholar 

  37. Deshiere A et al (2013) Unbalanced expression of CK2 kinase subunits is sufficient to drive epithelial-to-mesenchymal transition by Snail1 induction. Oncogene 32(11):1373–1383

    CAS  PubMed  Google Scholar 

  38. Snell V, Nurse P (1994) Genetic analysis of cell morphogenesis in fission yeast-a role for casein kinase II in the establishment of polarized growth. EMBO J 13:2066–2074

    PubMed Central  CAS  PubMed  Google Scholar 

  39. Roussou I, Dretta G (1994) The Schizosaccharomyces pombe casein kinase II alpha and beta subunits: evolutionary conservation and positive role for the beta subunits. Mol Cell Biol 14:576–586

    PubMed Central  CAS  PubMed  Google Scholar 

  40. Jauch E et al (2002) In vivo functional analysis of Drosophila protein kinase casein kinase 2 (CK2) beta-subunit. Gene 298:29–39

    CAS  PubMed  Google Scholar 

  41. Buchou T et al (2003) Disruption of the regulatory beta subunit of protein kinase CK2 in mice leads to a cell-autonomous defect and early embryonic lethality. Mol Cell Biol 23:908–915

    PubMed Central  CAS  PubMed  Google Scholar 

  42. Litchfield DW, Dobrowolska G, Krebs EG (1994) Regulation of casein kinase II by growth factors: a reevaluation. Cell Mol Biol Res 40(5/6):373–381

    CAS  PubMed  Google Scholar 

  43. Sommercorn J et al (1987) Activation of casein kinase II in response to insulin and to epidermal growth factor. Proc Natl Acad Sci U S A 84:8834–8838

    PubMed Central  CAS  PubMed  Google Scholar 

  44. Song DH, Sussman DJ, Seldin DC (2000) Endogenous protein kinase CK2 participates in Wnt signaling in mammary epithelial cells. J Biol Chem 275(31):23790–23797

    CAS  PubMed  Google Scholar 

  45. Willert K et al (1997) Casein kinase 2 associates with and phosphorylates Dishevelled. EMBO J 16:3089–3096

    PubMed Central  CAS  PubMed  Google Scholar 

  46. Gao Y, Wang HY (2006) Casein kinase 2 is activated and essential for Wnt/beta-catenin signaling. J Biol Chem 281(27):18394–18400

    CAS  PubMed  Google Scholar 

  47. Seldin DC et al (2005) CK2 as a positive regulator of Wnt signalling and tumourigenesis. Mol Cell Biochem 274(1–2):63–67

    CAS  PubMed  Google Scholar 

  48. Jia H et al (2010) Casein kinase 2 promotes Hedgehog signaling by regulating both smoothened and Cubitus interruptus. J Biol Chem 285(48):37218–37226

    PubMed Central  CAS  PubMed  Google Scholar 

  49. Jaffe L, Ryoo H-D, Mann RS (1997) A role for phosphorylation by casein kinase II in modulating Antennapedia activity in Drosophila. Genes Dev 11:1327–1340

    CAS  PubMed  Google Scholar 

  50. Bourbon HM et al (1995) Phosphorylation of the Drosophila engrailed protein at a site outside its homeodomain enhances DNA binding. J Biol Chem 270:11130–11139

    CAS  PubMed  Google Scholar 

  51. Coqueret O et al (1998) DNA binding by Cut homeodomain proteins Is down-modulated by Casein Kinase II. J Biol Chem 273(5):2561–2566

    CAS  PubMed  Google Scholar 

  52. Goldstein RE et al (2005) An eh1-like motif in odd-skipped mediates recruitment of groucho and repression in vivo. Mol Cell Biol 25(24):10711–10720

    PubMed Central  CAS  PubMed  Google Scholar 

  53. Dominguez I et al (2004) Protein kinase CK2 is required for dorsal axis formation in Xenopus embryos. Dev Biol 274(1):110–124

    CAS  PubMed  Google Scholar 

  54. Wong LC et al (2011) The functioning of the Drosophila CPEB protein Orb is regulated by phosphorylation and requires casein kinase 2 activity. PLoS One 6(9):e24355

    PubMed Central  CAS  PubMed  Google Scholar 

  55. Glover CVC (1986) A filamentous form of Drosophila casein kinase II. J Biol Chem 261:14349–14354

    CAS  PubMed  Google Scholar 

  56. Glover CVC, Shelton ER, Brutlag DL (1983) Purification and characterization of a type II casein kinase from Drosophila melanogaster. J Biol Chem 258(5):3258–3265

    CAS  PubMed  Google Scholar 

  57. Saxena A, Padmanabha R, Glover CVC (1987) Isolation and sequencing of cDNA clones encoding a and b subunits of Drosophila melanogaster casein kinase II. Mol Cell Biol 7(10):3409–3417

    PubMed Central  CAS  PubMed  Google Scholar 

  58. Bozzetti MP et al (1995) The Ste locus, a component of the parasitic cry-ste system of Drosophila melanogaster, encodes a protein that forms crystals in primary spermatocytes and mimics properties of the beta subunit of casein kinase II. Proc Natl Acad Sci U S A 92:6067–6071

    PubMed Central  CAS  PubMed  Google Scholar 

  59. Bidwai AP, Zhao WF, Glover CVC (1999) A gene located at 56 F1-2 in Drosophila melanogaster encodes a novel metazoan beta-like subunit of casein kinase II. Mol Cell Biol Res Commun 1:21–28

    CAS  PubMed  Google Scholar 

  60. Karandikar U et al (2003) The Drosophila SSL gene is expressed in larvae, pupae, and adults, exhibits sexual dimorphism, and mimics properties of the b subunit of casein kinase II. Biochem Biophys Res Commun 301:941–947

    CAS  PubMed  Google Scholar 

  61. Bidwai AP et al (2000) Multiple, closely spaced alternative 5′ exons in the DmCKIIbeta gene of Drosophila melanogaster. Mol Cell Biol Res Commun 3:283–291

    CAS  PubMed  Google Scholar 

  62. Jauch E et al (2006) The Drosophila melanogaster DmCK2beta transcription unit encodes for functionally non-redundant protein isoforms. Gene 374:142–152

    CAS  PubMed  Google Scholar 

  63. Greenwald I (2012) Notch and the awesome power of genetics. Genetics 191(3):655–669

    PubMed Central  CAS  PubMed  Google Scholar 

  64. D’Souza B, Meloty-Kapella L, Weinmaster G (2010) Canonical and non-canonical Notch ligands. Curr Top Dev Biol 92:73–129

    PubMed Central  PubMed  Google Scholar 

  65. Artavanis-Tsakonas S, Muskavitch MA (2010) Notch: the past, the present, and the future. Curr Top Dev Biol 92:1–29

    CAS  PubMed  Google Scholar 

  66. Tien AC, Rajan A, Bellen HJ (2009) A Notch updated. J Cell Biol 184(5):621–629

    PubMed Central  CAS  PubMed  Google Scholar 

  67. Kopan R (2002) Notch: a membrane-bound transcription factor. J Cell Sci 115(Pt 6):1095–1097

    CAS  PubMed  Google Scholar 

  68. Bray SJ (2006) Notch signalling: a simple pathway becomes complex. Nat Rev Mol Cell Biol 7(9):678–689

    CAS  PubMed  Google Scholar 

  69. Ilagan MX, Kopan R (2007) Notch signaling pathway. Cell 128(6):1246

    PubMed  Google Scholar 

  70. de la Pompa JL, Epstein JA (2012) Coordinating tissue interactions: notch signaling in cardiac development and disease. Dev Cell 22(2):244–254

    PubMed Central  PubMed  Google Scholar 

  71. Bajard L, Oates AC (2012) Breathe in and straighten your back: Hypoxia, Notch, and Scoliosis. Cell 149:255–256

    CAS  PubMed  Google Scholar 

  72. Louvi A, Artavanis-Tsakonas S (2006) Notch signalling in vertebrate neural development. Nat Rev Neurosci 7(2):93–102

    CAS  PubMed  Google Scholar 

  73. Pierfelice T, Alberi L, Gaiano N (2011) Notch in the vertebrate nervous system: an old dog with new tricks. Neuron 69(5):840–855

    CAS  PubMed  Google Scholar 

  74. Beets K et al (2013) Robustness in angiogenesis: notch and BMP shaping waves. Trends Genet 29(3):140–149

    CAS  PubMed  Google Scholar 

  75. Maillard I, Pear WS (2007) Immunology. Keeping a tight leash on Notch. Science 316(5826):840–842

    CAS  PubMed  Google Scholar 

  76. Wu MN, Raizen DM (2011) Notch signaling: a role in sleep and stress. Curr Biol 21(10):397–398

    Google Scholar 

  77. Seugnet L et al (2011) Notch signaling modulates sleep homeostasis and learning after sleep deprivation in drosophila. Curr Biol 21(10):835–840

    PubMed Central  CAS  PubMed  Google Scholar 

  78. Oellers N, Dehio M, Knust E (1994) BHLH proteins encoded by the enhancer of split complex of drosophila negatively interfere with transcriptional activation mediated by proneural genes. Mol Gen Genet 244:465–473

    CAS  PubMed  Google Scholar 

  79. Klambt C et al (1989) Closely related transcripts encoded by the neurogenic gene complex Enhancer of split of Drosophila melanogaster. EMBO J 8:203–210

    PubMed Central  CAS  PubMed  Google Scholar 

  80. Knust E et al (1992) Seven genes of the enhancer of split complex of Drosophila melanogaster encode helix-loop-helix proteins. Genetics 132:505–518

    PubMed Central  CAS  PubMed  Google Scholar 

  81. Delidakis C, Artavanis-Tsakonas S (1991) The enhancer of split [E(spl)] locus of Drosophila encodes seven independent helix-loop-helix proteins. Proc Natl Acad Sci U S A 89:8731–8735

    Google Scholar 

  82. Sun H, Ghaffari S, Taneja R (2007) bHLH-Orange transcription factors in development and cancer. Transl Oncogenomics 2:105–118

    Google Scholar 

  83. Dambly-Chaudiere C, Vervoort M (1998) The bHLH genes in neural development. Int J Dev Biol 42(3):269–273

    CAS  PubMed  Google Scholar 

  84. Massari ME, Murre C (2000) Helix-loop-helix proteins: regulators of transcription in eukaryotic organisms. Mol Cell Biol 20:429–440

    PubMed Central  CAS  PubMed  Google Scholar 

  85. Pratt EB et al (2011) The cell giveth and the cell taketh away: an overview of Notch pathway activation by endocytic trafficking of ligands and receptors. Acta Histochem 113(3):248–255

    PubMed Central  CAS  PubMed  Google Scholar 

  86. Yamamoto S, Charng WL, Bellen HJ (2010) Endocytosis and intracellular trafficking of Notch and its ligands. Curr Top Dev Biol 92:165–200

    CAS  PubMed  Google Scholar 

  87. Weinmaster G, Fischer JA (2011) Notch ligand ubiquitylation: what is it good for? Dev Cell 21(1):134–144

    PubMed Central  CAS  PubMed  Google Scholar 

  88. Modolell J, Campuzano S (1998) The achaete-scute complex as an integrating device. Int J Dev Biol 42(3):275–282

    CAS  PubMed  Google Scholar 

  89. Campos-Ortega JA (1998) The genetics of the Drosophila achaete-scute gene complex: a historical perspective. Int J Dev Biol 42:291–297

    CAS  PubMed  Google Scholar 

  90. Jarman AP et al (1994) Atonal is the proneural gene for Drosophila photoreceptors. Nature 369:398–400

    CAS  PubMed  Google Scholar 

  91. White N, Jarman A (2000) Drosophila atonal controls photoreceptor R8-specific properties and modulates both receptor tyrosine kinase and Hedgehog signalling. Development 127(8):1681–1689

    CAS  PubMed  Google Scholar 

  92. Reeves N, Posakony JW (2005) Genetic programs activated by proneural proteins in the developing Drosophila PNS. Dev Cell 8(3):413–425

    CAS  PubMed  Google Scholar 

  93. Kiefer JC (2005) Proneural factors and neurogenesis. Dev Dyn 234:808–813

    CAS  PubMed  Google Scholar 

  94. Jarman AP, Ahmed I (1998) The specificity of proneural genes in determining Drosophila sense organ identity. Mech Dev 76(1–2):117–125

    CAS  PubMed  Google Scholar 

  95. Bertrand N, Castro DS, Guillemot F (2002) Proneural genes and the specification of neural cell types. Nat Rev Neurosci 3(7):517–530

    CAS  PubMed  Google Scholar 

  96. Van Doren M et al (1992) Spatial regulation of proneural gene activity: auto- and cross-activation of achaete is antagonized by extramacrochaetae. Genes Dev 6(12B):2592–2605

    PubMed  Google Scholar 

  97. Culi J, Modolell J (1998) Proneural gene self-stimulation in neural precursors: an essential mechanism for sense organ development that is regulated by Notch signaling. Genes Dev 12:2036–2047

    PubMed Central  CAS  PubMed  Google Scholar 

  98. Okabe M et al (2001) Translational repression determines a neuronal potential in Drosophila asymmetric cell division. Nature 411(6833):94–98

    CAS  PubMed  Google Scholar 

  99. Bose A et al (2006) Drosophila CK2 regulates lateral-inhibition during eye and bristle development. Mech Dev 123:649–664

    CAS  PubMed  Google Scholar 

  100. Ligoxygakis P et al (1998) A subset of notch functions during drosophila eye development require Su(H) and E(spl) gene complex. Development 125:2893–2900

    CAS  PubMed  Google Scholar 

  101. Dominguez M (1999) Dual role for Hedgehog in the regulation of the proneural gene atonal during ommatidia development. Development 126(11):2345–2353

    CAS  PubMed  Google Scholar 

  102. Suzuki T, Saigo K (2000) Transcriptional regulation of atonal required for Drosophila larval eye development by concerted action of Eyes absent, Sine oculis and Hedgehog signaling independent of Fused kinase and Cubitus interruptus. Development 127:1531–1540

    CAS  PubMed  Google Scholar 

  103. Baker NE, Yu S, Han D (1996) Evolution of proneural atonal expression during distinct regulatory phases in the developing Drosophila eye. Curr Biol 6(10):1290–1301

    CAS  PubMed  Google Scholar 

  104. Cooper MTD, Bray SJ (1999) Frizzled regulation of Notch signaling polarizes cell fate in the Drosophila eye. Nature 397:526–530

    CAS  PubMed  Google Scholar 

  105. Tomlinson A, Mavromatakis YE, Struhl G (2011) Three distinct roles for notch in Drosophila R7 photoreceptor specification. PLoS Biol 9(8):e1001132

    PubMed Central  CAS  PubMed  Google Scholar 

  106. Axelrod JD (2010) Delivering the lateral inhibition punchline: it’s all about the timing. Sci Signal 3(145):pe38

    PubMed  Google Scholar 

  107. Simpson P (1990) Lateral inhibition and the development of the sensory bristles of the adult peripheral nervous system of Drosophila. Development 109(3):509–519

    CAS  PubMed  Google Scholar 

  108. Ehebauer M, Hayward P, Martinez-Arias A (2006) Notch signaling pathway. Sci STKE 2006(364):cm7

    PubMed  Google Scholar 

  109. Ehebauer M, Hayward P, Arias AM (2006) Notch, a universal arbiter of cell fate decisions. Science 314(5804):1414–1415

    CAS  PubMed  Google Scholar 

  110. Cooper MTD et al (2000) Spatially restricted factors cooperate with notch in the regulation of enhancer of split genes. Dev Biol 221:390–403

    CAS  PubMed  Google Scholar 

  111. Cave JW, Xia L, Caudy M (2011) Differential regulation of transcription through distinct Suppressor of Hairless DNA binding site architectures during Notch signaling in proneural clusters. Mol Cell Biol 31(1):22–29

    PubMed Central  CAS  PubMed  Google Scholar 

  112. Cohen M et al (2010) Dynamic filopodia transmit intermittent Delta-Notch signaling to drive pattern refinement during lateral inhibition. Dev Cell 19(1):78–89

    CAS  PubMed  Google Scholar 

  113. Milan M, Cohen SM (2010) Notch signaling: filopodia dynamics confer robustness. Curr Biol 20(18):R802–R804

    CAS  PubMed  Google Scholar 

  114. Dawson SR et al (1995) Specificity for the hairy/enhancer of split basic helix-loop-helix (bHLH) proteins maps outside the bHLH domain and suggests two separable modes of transcriptional repression. Mol Cell Biol 15:6923–6931

    PubMed Central  CAS  PubMed  Google Scholar 

  115. Paroush Z et al (1994) Groucho is required for Drosophila neurogenesis, segmentation, and sex determination and interacts directly with hairy related bHLH proteins. Cell 79:805–815

    CAS  PubMed  Google Scholar 

  116. Jennings BH, Tyler DM, Bray SJ (1999) Target specificities of drosophila enhancer of split basic helix-loop-helix proteins. Mol Cell Biol 19(7):4600–4610

    PubMed Central  CAS  PubMed  Google Scholar 

  117. Jimenez G, Ish-Horowicz D (1997) A chimeric Enhancer of split transcriptional activator drives neural development and achaete-scute expression. Mol Cell Biol 17(8):4355–4362

    PubMed Central  CAS  PubMed  Google Scholar 

  118. Sun Y, Jan L, Jan Y (1998) Transcriptional regulation of atonal during development of the Drosophila peripheral nervous system. Development 125(18):3731–3740

    CAS  PubMed  Google Scholar 

  119. Baker NE (2004) Atonal points the way- protein-protein interactions and developmental biology. Dev Cell 7(5):632–634

    CAS  PubMed  Google Scholar 

  120. Giagtzoglou N et al (2003) Two modes of recruitment of E(spl) repressors onto target genes. Development 130:259–270

    CAS  PubMed  Google Scholar 

  121. Alifragis P et al (1997) A network of interacting transcriptional regulators involved in Drosophila neural fate specification revealed by the yeast two-hybrid system. Proc Natl Acad Sci U S A 94:13099–13104

    PubMed Central  CAS  PubMed  Google Scholar 

  122. Gigliani F et al (1996) Interactions among the bHLH domains of the proteins encoded by the enhancer of split and achaete-scute gene complexes of Drosophila. Mol Gen Genet 251:628–634

    CAS  PubMed  Google Scholar 

  123. Nagel AC, Preiss A (1999) Notch spl is deficient for inductive processes in the eye, and E(spl)D enhances split by interfering with proneural activity. Dev Biol 208:406–415

    CAS  PubMed  Google Scholar 

  124. Nagel A, Yu Y, Preiss A (1999) Enhancer of Split [E(spl)D] is a Gro-independent, hypermorphic mutation in Drosophila. Dev Genet 25:168–179

    CAS  PubMed  Google Scholar 

  125. Karandikar U et al (2004) Drosophila CK2 regulates eye morphogenesis via phosphorylation of E(spl)M8. Mech Dev 121:273–286

    CAS  PubMed  Google Scholar 

  126. Trott RL et al (2001) Drosophila melanogaster casein kinase II interacts with and phosphorylates the basic-helix-loop-helix (bHLH) proteins m5, m7, and m8 derived from the Enhancer of split complex. J Biol Chem 276:2159–2167

    CAS  PubMed  Google Scholar 

  127. Welshons WJ (1956) Dosage experiments with split mutations in the presence of an enhancer of split. Drosophila Inform Serv 30:157–158

    Google Scholar 

  128. Welshons WJ (1965) Analysis of a gene in Drosophila. Science 150:1122–1129

    CAS  PubMed  Google Scholar 

  129. Tietze K, Oellers N, Knust E (1992) Enhancer of SplitD, a dominant mutation of Drosophila, and its use in the study of functional domains of a helix-loop-helix protein. Proc Natl Acad Sci U S A 89(13):6152–6156

    PubMed Central  CAS  PubMed  Google Scholar 

  130. Giebel B, Campos-Ortega JA (1997) Functional dissection of the Drosophila enhancer of split protein, a suppressor of neurogenesis. Proc Natl Acad Sci U S A 94:6250–6254

    PubMed Central  CAS  PubMed  Google Scholar 

  131. Kahali B et al (2009) On the mechanism underlying the divergent retinal and bristle defects of M8* (E(spl)D) in Drosophila. Genesis 47:456–468

    PubMed Central  CAS  PubMed  Google Scholar 

  132. Kahali B et al (2010) Evidence that the C-terminal domain (CtD) autoinhibits neural repression by Drosophila E(spl)M8. Genesis 48:44–55

    CAS  PubMed  Google Scholar 

  133. Gratton M-O et al (2003) Hes6 promotes cortical neurogenesis and inhibits Hes1 transcription repression activity by multiple mechanisms. Mol Cell Biol 23(19):6922–6935

    PubMed Central  CAS  PubMed  Google Scholar 

  134. Beverly SM, Wilson AC (1984) Molecular evolution in Drosophila and the higher Diptera II. A time scale for fly evolution. J Mol Evol 21:1–13

    Google Scholar 

  135. Baker RH, Kuehl JV, Wilkinson GS (2011) The Enhancer of split complex arose prior to the diversification of schizophoran flies and is strongly conserved between Drosophila and stalk-eyed flies (Diopsidae). BMC Evol Biol 11:354

    PubMed Central  CAS  PubMed  Google Scholar 

  136. Tompa P (2012) Intrinsically disordered proteins: a 10-year recap. Trends Biochem Sci 37(12):509–516

    CAS  PubMed  Google Scholar 

  137. Goh GK, Dunker AK, Uversky VN (2008) Protein intrinsic disorder toolbox for comparative analysis of viral proteins. BMC Genomics 9(Suppl 2):S4

    PubMed Central  PubMed  Google Scholar 

  138. Garza AS, Ahmad N, Kumar R (2009) Role of intrinsically disordered protein regions/domains in transcriptional regulation. Life Sci 84(7–8):189–193

    CAS  PubMed  Google Scholar 

  139. Dunker AK et al (2008) Function and structure of inherently disordered proteins. Curr Opin Struct Biol 18(6):756–764

    CAS  PubMed  Google Scholar 

  140. Roy A, Kucukural A, Zhang Y (2010) I-TASSER: a unified platform for automated protein structure and function prediction. Nat Protoc 5(4):725–738

    PubMed Central  CAS  PubMed  Google Scholar 

  141. Eastwood K et al (2011) New insights into the Orange domain of E(spl)-M8, and the roles of the C-terminal domain in autoinhibition and Groucho recruitment. Mol Cell Biochem 356:217–225

    PubMed Central  CAS  PubMed  Google Scholar 

  142. Belanger-Jasmin S et al (2007) Inhibition of cortical astrocyte differentiation by Hes6 requires amino- and carboxy-terminal motifs important for dimerization and phosphorylation. J Neurochem 103(5):2022–2034

    CAS  PubMed  Google Scholar 

  143. Lesokhin AM et al (1999) Several levels of EGF receptor signaling during photoreceptor specification in wild-type, ellipse, and null mutant Drosophila. Dev Biol 205:129–144

    CAS  PubMed  Google Scholar 

  144. Kumar JP et al (2003) Nuclear translocation of activated MAP kinase is developmentally regulated in the developing Drosophila eye. Development 130(16):3703–3714

    PubMed Central  CAS  PubMed  Google Scholar 

  145. Yang L, Baker NE (2003) Cell cycle withdrawal, progression, and cell survival regulation by EGFR and its effectors in the differentiating Drosophila eye. Dev Cell 4(3):359–369

    CAS  PubMed  Google Scholar 

  146. Heriche JK et al (1997) Regulation of protein phosphatase 2A by direct interaction with casein kinase 2alpha. Science 276(5314):952–955

    CAS  PubMed  Google Scholar 

  147. Eichhorn PJ, Creyghton MP, Bernards R (2009) Protein phosphatase 2A regulatory subunits and cancer. Biochim Biophys Acta 1795(1):1–15

    CAS  PubMed  Google Scholar 

  148. Millward T, Zolnierowicz S, Hemmings B (1999) Regulation of protein kinase cascades by protein phosphatase 2A. Trends Biochem Sci 24:186–191

    CAS  PubMed  Google Scholar 

  149. Xu Y et al (2006) Structure of the protein phosphatase 2A holoenzyme. Cell 127(6):1239–1251

    CAS  PubMed  Google Scholar 

  150. Kunttas-Tatli E et al (2009) Functional dissection of Timekeeper (Tik) implicates opposite roles for CK2 and PP2A during Drosophila neurogenesis. Genesis 47:647–658

    PubMed Central  CAS  PubMed  Google Scholar 

  151. Bose A, Majot AT, Bidwai AP (2014) The Ser/Thr phosphatase PP2A regulatory subunit widerborst inhibits notch signaling. PLoS One 9(7):e101884

    PubMed Central  PubMed  Google Scholar 

  152. Guruharsha KG et al (2012) Drosophila protein interaction Map (DPiM): a paradigm for metazoan protein complex interactions. Fly (Austin) 6(4):246–253

    CAS  Google Scholar 

  153. Jiang J, Struhl G (1998) Regulation of the Hedgehog and Wingless signalling pathways by the F-box/WD40-repeat protein Slimb. Nature 391(6666):493–496

    CAS  PubMed  Google Scholar 

  154. Isoda M et al (2009) The extracellular signal-regulated kinase-mitogen-activated protein kinase pathway phosphorylates and targets Cdc25A for SCF beta-TrCP-dependent degradation for cell cycle arrest. Mol Biol Cell 20(8):2186–2195

    PubMed Central  CAS  PubMed  Google Scholar 

  155. Brown NL et al (1996) Daughterless is required for drosophila photoreceptor cell determination, eye morphogenesis, and cell cycle progression. Dev Biol 179:65–78

    CAS  PubMed  Google Scholar 

  156. Powell LM et al (2004) The proneural proteins Atonal and Scute regulate neural target genes through different E-box binding sites. Mol Cell Biol 24(21):9517–9526

    PubMed Central  CAS  PubMed  Google Scholar 

  157. Nolo R, Abbott LA, Bellen HJ (2000) Senseless, a Zn finger transcription factor, is necessary and sufficient for sensory organ development in Drosophila. Cell 102(3):349–362

    CAS  PubMed  Google Scholar 

  158. The I et al (1997) Rescue of a Drosophila NF1 mutant phenotype by protein kinase A. Science 276:791–794

    CAS  PubMed  Google Scholar 

  159. Fortini ME (2009) Notch Signaling: The core pathway and Its posttranslational regulation. Dev Cell 16:633–647

    CAS  PubMed  Google Scholar 

  160. Gridley T (2003) Notch signaling and inherited disease syndromes. Hum Mol Genet 12(1):R9–R13

    CAS  PubMed  Google Scholar 

  161. McDaniell R et al (2006) NOTCH2 mutations cause Alagille syndrome, a heterogeneous disorder of the notch signaling pathway. Am J Hum Genet 79(1):169–173

    PubMed Central  CAS  PubMed  Google Scholar 

  162. MacGrogan D, Nus M, de la Pompa JL (2010) Notch signaling in cardiac development and disease. Curr Top Dev Biol 92:333–365

    CAS  PubMed  Google Scholar 

  163. Qiao L, Wong BC (2009) Role of Notch signaling in colorectal cancer. Carcinogenesis 30(12):1979–1986

    CAS  PubMed  Google Scholar 

  164. Bolos V, Grego-Bessa J, de la Pompa JL (2007) Notch signaling in development and cancer. Endocr Rev 28(3):339–363

    CAS  PubMed  Google Scholar 

  165. Andersson ER, Lendahl U (2014) Therapeutic modulation of Notch signalling–are we there yet? Nat Rev Drug Discov 13(5):357–378

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

Supported by a grant from the National Institutes of Health (EY015718) to A. P. B.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ashok P. Bidwai .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Majot, A.T., Sizemore, T.R., Bandyopadhyay, M., Jozwick, L.M., Bidwai, A.P. (2015). Protein Kinase CK2: A Window into the Posttranslational Regulation of the E(spl)/HES Repressors from Invertebrates and Vertebrates. In: Ahmed, K., Issinger, OG., Szyszka, R. (eds) Protein Kinase CK2 Cellular Function in Normal and Disease States. Advances in Biochemistry in Health and Disease, vol 12. Springer, Cham. https://doi.org/10.1007/978-3-319-14544-0_6

Download citation

Publish with us

Policies and ethics