Skip to main content

CK2: A Global Regulator of Cell Death

  • Chapter
  • First Online:
Protein Kinase CK2 Cellular Function in Normal and Disease States

Part of the book series: Advances in Biochemistry in Health and Disease ((ABHD,volume 12))

Abstract

Protein kinase CK2 has emerged as a major signal involved in diverse cellular functions of health and disease. The nature of its broad of range of functions is underscored by the large number of potential substrates of CK2 present in various locales in the cell. CK2 has gained much attention for its role in cancer biology, which is attributed to its functions both in cell growth and proliferation as well as in the regulation of cell death. Indeed, it appears that CK2 impact on cell death may be one of its most important functions, especially in the context of cancer biology where both cell proliferation and cell death are dysregulated and elevated CK2 in cancer would have an effect on both of these activities. Just as CK2 has been proposed to have a global role in cell growth-related activities, it appears that it may have an analogous global role in the suppression of apoptosis when it is elevated and induce cell death when it is downregulated. In this review, we have highlighted the current status of CK2 involvement in the processes related to cell death with a focus on apoptosis. It is proposed that a newly identified mechanism of CK2 regulation of cell death relates to its impact on early intracellular dynamics of Ca2+ signaling which profoundly alter mitochondrial function and lead to cell death.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

CK2:

The adopted acronym for previous name casein kinase

CK2α:

42 kDa catalytic subunit of CK2

CK2 α′:

38 kDa catalytic subunit of CK2

CK2β:

28 kDa regulatory subunit of CK2

DR:

Death receptor

ER:

Endoplasmic reticulum

IAPs:

Inhibitor of apoptosis proteins (including cIAP1, cIAP2, XIAP, and survivin)

MNA:

1,8-Dihydroxy-4-nitro-anthracene-9,10-dione

OGN:

Oligonucleotides

NM:

Nuclear matrix

RIP1:

Receptor-interacting protein-1

ROS:

Reactive oxygen species

TBB:

4,5,6,7-Tetrabrombenzotriazole

TBCA:

Tetrabromocinnamic acid

TNFα:

Tumor necrosis factor α

TRADD:

TNF receptor type I-associated death domain protein

TRAF2:

TNF receptor-associated factor-2

TRAIL/Apo2-L:

Tumor necrosis factor-related apoptosis-inducing ligand

References

  1. Venerando A, Ruzzene M, Pinna LA (2014) Casein kinase: the triple meaning of a misnomer. Biochem J 460(2):141–156. doi:10.1042/BJ20140178

    CAS  PubMed  Google Scholar 

  2. Guo C, Yu S, Davis AT, Wang H, Green JE, Ahmed K (2001) A potential role of nuclear matrix-associated protein kinase CK2 in protection against drug-induced apoptosis in cancer cells. J Biol Chem 276(8):5992–5999. doi:10.1074/jbc.M004862200

    CAS  PubMed  Google Scholar 

  3. Ahmed K, Gerber DA, Cochet C (2002) Joining the cell survival squad: an emerging role for protein kinase CK2. Trends Cell Biol 12(5):226–230

    CAS  PubMed  Google Scholar 

  4. Ahmad KA, Wang G, Unger G, Slaton J, Ahmed K (2008) Protein kinase CK2—a key suppressor of apoptosis. Adv Enzyme Regul 48:179–187. doi:10.1016/j.advenzreg.2008.04.002

    PubMed Central  CAS  PubMed  Google Scholar 

  5. Blanquet PR (2000) Casein kinase 2 as a potentially important enzyme in the nervous system. Prog Neurobiol 60(3):211–246, doi:S0301-0082(99)00026-X [pii]

    CAS  PubMed  Google Scholar 

  6. Dominguez I, Mizuno J, Wu H, Song DH, Symes K, Seldin DC (2004) Protein kinase CK2 is required for dorsal axis formation in Xenopus embryos. Dev Biol 274(1):110–124. doi:10.1016/j.ydbio.2004.06.021, S0012-1606(04)00438-5 [pii]

    CAS  PubMed  Google Scholar 

  7. Blond O, Jensen HH, Buchou T, Cochet C, Issinger OG, Boldyreff B (2005) Knocking out the regulatory beta subunit of protein kinase CK2 in mice: gene dosage effects in ES cells and embryos. Mol Cell Biochem 274(1–2):31–37

    CAS  PubMed  Google Scholar 

  8. Buchou T, Vernet M, Blond O, Jensen HH, Pointu H, Olsen BB, Cochet C, Issinger OG, Boldyreff B (2003) Disruption of the regulatory β subunit of protein kinase CK2 in mice leads to a cell-autonomous defect and early embryonic lethality. Mol Cell Biol 23(3):908–915

    PubMed Central  CAS  PubMed  Google Scholar 

  9. Huillard E, Ziercher L, Blond O, Wong M, Deloulme JC, Souchelnytskyi S, Baudier J, Cochet C, Buchou T (2010) Disruption of CK2beta in embryonic neural stem cells compromises proliferation and oligodendrogenesis in the mouse telencephalon. Mol Cell Biol 30(11):2737–2749. doi:10.1128/MCB.01566-09

    PubMed Central  CAS  PubMed  Google Scholar 

  10. Mestres P, Boldyreff B, Ebensperger C, Hameister H, Issinger OG (1994) Expression of casein kinase 2 during mouse embryogenesis. Acta Anat (Basel) 149(1):13–20

    CAS  Google Scholar 

  11. Ahmed K (1999) Nuclear matrix and protein kinase CK2 signaling. Crit Rev Eukaryot Gene Expr 9(3–4):329–336

    CAS  PubMed  Google Scholar 

  12. Trembley JH, Wang G, Unger G, Slaton J, Ahmed K (2009) Protein kinase CK2 in health and disease: CK2: a key player in cancer biology. Cell Mol Life Sci 66(11–12):1858–1867. doi:10.1007/s00018-009-9154-y

    CAS  PubMed  Google Scholar 

  13. Rayan A, Goueli SA, Lange P, Ahmed K (1985) Chromatin-associated protein kinases in human normal and benign hyperplastic prostate. Cancer Res 45(5):2277–2282

    CAS  PubMed  Google Scholar 

  14. Meggio F, Pinna LA (2003) One-thousand-and-one substrates of protein kinase CK2? FASEB J 17(3):349–368. doi:10.1096/fj.02-0473rev

    CAS  PubMed  Google Scholar 

  15. Rebholz H, Nishi A, Liebscher S, Nairn AC, Flajolet M, Greengard P (2009) CK2 negatively regulates Galphas signaling. Proc Natl Acad Sci U S A 106(33):14096–14101. doi:10.1073/pnas.0906857106, 0906857106 [pii]

    PubMed Central  CAS  PubMed  Google Scholar 

  16. Rebholz H, Zhou M, Nairn AC, Greengard P, Flajolet M (2013) Selective knockout of the casein kinase 2 in d1 medium spiny neurons controls dopaminergic function. Biol Psychiatry 74(2):113–121. doi:10.1016/j.biopsych.2012.11.013, S0006-3223(12)00994-8 [pii]

    CAS  PubMed  Google Scholar 

  17. Munstermann U, Fritz G, Seitz G, Lu YP, Schneider HR, Issinger OG (1990) Casein kinase II is elevated in solid human tumours and rapidly proliferating non-neoplastic tissue. Eur J Biochem 189(2):251–257

    CAS  PubMed  Google Scholar 

  18. Guerra B, Issinger OG (2008) Protein kinase CK2 in human diseases. Curr Med Chem 15(19):1870–1886. doi:10.1007/s00018-009-9148-9

    CAS  PubMed  Google Scholar 

  19. Tawfic S, Yu S, Wang H, Faust R, Davis A, Ahmed K (2001) Protein kinase CK2 signal in neoplasia. Histol Histopathol 16(2):573–582

    CAS  PubMed  Google Scholar 

  20. Yenice S, Davis AT, Goueli SA, Akdas A, Limas C, Ahmed K (1994) Nuclear casein kinase 2 (CK-2) activity in human normal, benign hyperplastic, and cancerous prostate. Prostate 24(1):11–16

    CAS  PubMed  Google Scholar 

  21. Wang G, Ahmad KA, Ahmed K (2005) Modulation of death receptor-mediated apoptosis by CK2. Mol Cell Biochem 274(1–2):201–205

    CAS  PubMed  Google Scholar 

  22. Wang H, Davis A, Yu S, Ahmed K (2001) Response of cancer cells to molecular interruption of the CK2 signal. Mol Cell Biochem 227(1–2):167–174. doi:10.1023/A:1013112908734

    CAS  PubMed  Google Scholar 

  23. Hanahan D, Weinberg RA (2011) Hallmarks of cancer: the next generation. Cell 144(5):646–674. doi:10.1016/j.cell.2011.02.013

    CAS  PubMed  Google Scholar 

  24. Evan GI, Vousden KH (2001) Proliferation, cell cycle and apoptosis in cancer. Nature 411(6835):342–348. doi:10.1038/35077213

    CAS  PubMed  Google Scholar 

  25. McKenzie S, Kyprianou N (2006) Apoptosis evasion: the role of survival pathways in prostate cancer progression and therapeutic resistance. J Cell Biochem 97(1):18–32. doi:10.1002/jcb.20634

    PubMed Central  CAS  PubMed  Google Scholar 

  26. Judah JD, Ahmed K, McLean AE (1965) Pathogenesis of cell necrosis. Fed Proc 24(5):1217–1221

    CAS  PubMed  Google Scholar 

  27. Lockshin RA, Williams CM (1965) Programmed cell death—I. Cytology of degeneration in the intersegmental muscles of the Pernyi silkmoth. J Insect Physiol 11:123–133

    CAS  PubMed  Google Scholar 

  28. Kerr JF, Wyllie AH, Currie AR (1972) Apoptosis: a basic biological phenomenon with wide-ranging implications in tissue kinetics. Br J Cancer 26(4):239–257

    PubMed Central  CAS  PubMed  Google Scholar 

  29. Lemasters JJ, Nieminen AL, Qian T, Trost LC, Elmore SP, Nishimura Y, Crowe RA, Cascio WE, Bradham CA, Brenner DA, Herman B (1998) The mitochondrial permeability transition in cell death: a common mechanism in necrosis, apoptosis and autophagy. Biochim Biophys Acta 1366(1–2):177–196

    CAS  PubMed  Google Scholar 

  30. Ashkenazi A, Dixit VM (1999) Apoptosis control by death and decoy receptors. Curr Opin Cell Biol 11(2):255–260

    CAS  PubMed  Google Scholar 

  31. Liu Y, Shoji-Kawata S, Sumpter RM Jr, Wei Y, Ginet V, Zhang L, Posner B, Tran KA, Green DR, Xavier RJ, Shaw SY, Clarke PG, Puyal J, Levine B (2013) Autosis is a Na+, K+-ATPase-regulated form of cell death triggered by autophagy-inducing peptides, starvation, and hypoxia-ischemia. Proc Natl Acad Sci U S A 110(51):20364–20371. doi:10.1073/pnas.1319661110

    PubMed Central  CAS  PubMed  Google Scholar 

  32. Green DR, Levine B (2014) To be or not to be? How selective autophagy and cell death govern cell fate. Cell 157(1):65–75. doi:10.1016/j.cell.2014.02.049

    CAS  PubMed  Google Scholar 

  33. Zornig M, Hueber A, Baum W, Evan G (2001) Apoptosis regulators and their role in tumorigenesis. Biochim Biophys Acta 1551(2):F1–F37, doi:S0304419X01000312 [pii]

    CAS  PubMed  Google Scholar 

  34. Linkermann A, Green DR (2014) Necroptosis. N Engl J Med 370(5):455–465. doi:10.1056/NEJMra1310050

    PubMed Central  CAS  PubMed  Google Scholar 

  35. Lockshin RA, Zakeri Z (2004) Apoptosis, autophagy, and more. Int J Biochem Cell Biol 36(12):2405–2419. doi:10.1016/j.biocel.2004.04.011

    CAS  PubMed  Google Scholar 

  36. Kroemer G, Martin SJ (2005) Caspase-independent cell death. Nat Med 11(7):725–730. doi:10.1038/nm1263

    PubMed  Google Scholar 

  37. Nikoletopoulou V, Markaki M, Palikaras K, Tavernarakis N (2013) Crosstalk between apoptosis, necrosis and autophagy. Biochim Biophys Acta 1833(12):3448–3459. doi:10.1016/j.bbamcr.2013.06.001

    CAS  PubMed  Google Scholar 

  38. Danial NN, Korsmeyer SJ (2004) Cell death: critical control points. Cell 116(2):205–219

    CAS  PubMed  Google Scholar 

  39. Elmore S (2007) Apoptosis: a review of programmed cell death. Toxicol Pathol 35(4):495–516. doi:10.1080/01926230701320337

    PubMed Central  CAS  PubMed  Google Scholar 

  40. Degterev A, Yuan J (2008) Expansion and evolution of cell death programmes. Nat Rev Mol Cell Biol 9(5):378–390. doi:10.1038/nrm2393

    CAS  PubMed  Google Scholar 

  41. Hitomi J, Christofferson DE, Ng A, Yao J, Degterev A, Xavier RJ, Yuan J (2008) Identification of a molecular signaling network that regulates a cellular necrotic cell death pathway. Cell 135(7):1311–1323. doi:10.1016/j.cell.2008.10.044

    PubMed Central  CAS  PubMed  Google Scholar 

  42. Zou H, Li Y, Liu X, Wang X (1999) An APAF-1.cytochrome c multimeric complex is a functional apoptosome that activates procaspase-9. J Biol Chem 274(17):11549–11556

    CAS  PubMed  Google Scholar 

  43. Lassus P, Opitz-Araya X, Lazebnik Y (2002) Requirement for caspase-2 in stress-induced apoptosis before mitochondrial permeabilization. Science 297(5585):1352–1354. doi:10.1126/science.1074721, 297/5585/1352 [pii]

    CAS  PubMed  Google Scholar 

  44. Hitomi J, Katayama T, Eguchi Y, Kudo T, Taniguchi M, Koyama Y, Manabe T, Yamagishi S, Bando Y, Imaizumi K, Tsujimoto Y, Tohyama M (2004) Involvement of caspase-4 in endoplasmic reticulum stress-induced apoptosis and Abeta-induced cell death. J Cell Biol 165(3):347–356. doi:10.1083/jcb.200310015, jcb.200310015 [pii]

    PubMed Central  CAS  PubMed  Google Scholar 

  45. Nakagawa T, Zhu H, Morishima N, Li E, Xu J, Yankner BA, Yuan J (2000) Caspase-12 mediates endoplasmic-reticulum-specific apoptosis and cytotoxicity by amyloid-beta. Nature 403(6765):98–103. doi:10.1038/47513

    CAS  PubMed  Google Scholar 

  46. Wilson NS, Dixit V, Ashkenazi A (2009) Death receptor signal transducers: nodes of coordination in immune signaling networks. Nat Immunol 10(4):348–355. doi:10.1038/ni.1714

    CAS  PubMed  Google Scholar 

  47. Ashkenazi A, Dixit VM (1998) Death receptors: signaling and modulation. Science 281(5381):1305–1308

    CAS  PubMed  Google Scholar 

  48. Chen L, Willis SN, Wei A, Smith BJ, Fletcher JI, Hinds MG, Colman PM, Day CL, Adams JM, Huang DC (2005) Differential targeting of prosurvival Bcl-2 proteins by their BH3-only ligands allows complementary apoptotic function. Mol Cell 17(3):393–403. doi:10.1016/j.molcel.2004.12.030, S1097276505010403 [pii]

    CAS  PubMed  Google Scholar 

  49. Festjens N, Vanden Berghe T, Vandenabeele P (2006) Necrosis, a well-orchestrated form of cell demise: signalling cascades, important mediators and concomitant immune response. Biochim Biophys Acta 1757(9–10):1371–1387. doi:10.1016/j.bbabio.2006.06.014, S0005-2728(06)00212-X [pii]

    CAS  PubMed  Google Scholar 

  50. Zong WX, Ditsworth D, Bauer DE, Wang ZQ, Thompson CB (2004) Alkylating DNA damage stimulates a regulated form of necrotic cell death. Genes Dev 18(11):1272–1282. doi:10.1101/gad.1199904, 1199904 [pii]

    PubMed Central  CAS  PubMed  Google Scholar 

  51. Judah JD, Ahmed K, McLean AE (1966) Cation changes following liver injury due to carbon tetrachloride. Ann Med Exp Biol Fenn 44(2):338–342

    CAS  PubMed  Google Scholar 

  52. Holler N, Zaru R, Micheau O, Thome M, Attinger A, Valitutti S, Bodmer JL, Schneider P, Seed B, Tschopp J (2000) Fas triggers an alternative, caspase-8-independent cell death pathway using the kinase RIP as effector molecule. Nat Immunol 1(6):489–495. doi:10.1038/82732

    CAS  PubMed  Google Scholar 

  53. Shimizu S, Kanaseki T, Mizushima N, Mizuta T, Arakawa-Kobayashi S, Thompson CB, Tsujimoto Y (2004) Role of Bcl-2 family proteins in a non-apoptotic programmed cell death dependent on autophagy genes. Nat Cell Biol 6(12):1221–1228. doi:10.1038/ncb1192, ncb1192 [pii]

    CAS  PubMed  Google Scholar 

  54. Pattingre S, Tassa A, Qu X, Garuti R, Liang XH, Mizushima N, Packer M, Schneider MD, Levine B (2005) Bcl-2 antiapoptotic proteins inhibit Beclin 1-dependent autophagy. Cell 122(6):927–939. doi:10.1016/j.cell.2005.07.002, S0092-8674(05)00692-6 [pii]

    CAS  PubMed  Google Scholar 

  55. Guo C, Davis AT, Ahmed K (1998) Dynamics of protein kinase CK2 association with nucleosomes in relation to transcriptional activity. J Biol Chem 273(22):13675–13680. doi:10.1074/jbc.273.22.13675

    CAS  PubMed  Google Scholar 

  56. Barz T, Ackermann K, Dubois G, Eils R, Pyerin W (2003) Genome-wide expression screens indicate a global role for protein kinase CK2 in chromatin remodeling. J Cell Sci 116(Pt 8):1563–1577

    CAS  PubMed  Google Scholar 

  57. Basnet H, Su XB, Tan Y, Meisenhelder J, Merkurjev D, Ohgi KA, Hunter T, Pillus L, Rosenfeld MG (2014) Tyrosine phosphorylation of histone H2A by CK2 regulates transcriptional elongation. Nature. doi:10.1038/nature13736, nature13736 [pii]

    PubMed  Google Scholar 

  58. Ahmed K, Ishida H (1971) Effect of testosterone on nuclear phosphoproteins of rat ventral prostate. Mol Pharmacol 7(3):323–327

    CAS  PubMed  Google Scholar 

  59. Goueli SA, Ahmed K (1991) Nature of the intrinsic protein kinases involved in phosphorylation of non-histone proteins in intact prostatic nuclei: further identification of androgen-sensitive protein kinase reactions. Mol Cell Biochem 101(2):145–155

    CAS  PubMed  Google Scholar 

  60. Wyllie AH, Kerr JF, Currie AR (1980) Cell death: the significance of apoptosis. Int Rev Cytol 68:251–306

    CAS  PubMed  Google Scholar 

  61. Ahmed K, Wilson MJ (1975) Chromatin-associated protein phosphokinases of rat ventral prostate. Characteristics and effects of androgenic status. J Biol Chem 250(6):2370–2375

    CAS  PubMed  Google Scholar 

  62. Ahmed K, Yenice S, Davis A, Goueli SA (1993) Association of casein kinase 2 with nuclear chromatin in relation to androgenic regulation of rat prostate. Proc Natl Acad Sci U S A 90(10):4426–4430

    PubMed Central  CAS  PubMed  Google Scholar 

  63. Tawfic S, Ahmed K (1994) Association of casein kinase 2 with nuclear matrix. Possible role in nuclear matrix protein phosphorylation. J Biol Chem 269(10):7489–7493

    CAS  PubMed  Google Scholar 

  64. Tawfic S, Ahmed K (1994) Growth stimulus-mediated differential translocation of casein kinase 2 to the nuclear matrix. Evidence based on androgen action in the prostate. J Biol Chem 269(40):24615–24620

    CAS  PubMed  Google Scholar 

  65. Tawfic S, Faust RA, Gapany M, Ahmed K (1996) Nuclear matrix as an anchor for protein kinase CK2 nuclear signalling. J Cell Biochem 62(2):165–171, doi:10.1002/(SICI)1097-4644(199608)62:2<165::AID-JCB4>3.0.CO;2-Q

    CAS  PubMed  Google Scholar 

  66. Faust M, Montenarh M (2000) Subcellular localization of protein kinase CK2. A key to its function? Cell Tissue Res 301(3):329–340

    CAS  PubMed  Google Scholar 

  67. Guo C, Yu S, Davis AT, Ahmed K (1999) Nuclear matrix targeting of the protein kinase CK2 signal as a common downstream response to androgen or growth factor stimulation of prostate cancer cells. Cancer Res 59(5):1146–1151

    CAS  PubMed  Google Scholar 

  68. Okoumassoun LE, Russo C, Denizeau F, Averill-Bates D, Henderson JE (2007) Parathyroid hormone-related protein (PTHrP) inhibits mitochondrial-dependent apoptosis through CK2. J Cell Physiol 212(3):591–599. doi:10.1002/jcp.21055

    CAS  PubMed  Google Scholar 

  69. Galluzzi L, Bravo-San Pedro JM, Kroemer G (2014) Organelle-specific initiation of cell death. Nat Cell Biol 16(8):728–736. doi:10.1038/ncb3005, ncb3005 [pii]

    CAS  PubMed  Google Scholar 

  70. Brown MS, Diallo OT, Hu M, Ehsanian R, Yang X, Arun P, Lu H, Korman V, Unger G, Ahmed K, Van Waes C, Chen Z (2010) CK2 modulation of NF-κB, TP53, and the malignant phenotype in head and neck cancer by anti-CK2 oligonucleotides in vitro or in vivo via sub-50-nm nanocapsules. Clin Cancer Res 16(8):2295–2307. doi:10.1158/1078-0432.ccr-09-3200

    PubMed Central  CAS  PubMed  Google Scholar 

  71. Wang G, Unger G, Ahmad KA, Slaton JW, Ahmed K (2005) Downregulation of CK2 induces apoptosis in cancer cells—a potential approach to cancer therapy. Mol Cell Biochem 274(1–2):77–84

    CAS  PubMed  Google Scholar 

  72. Faust RA, Tawfic S, Davis AT, Bubash LA, Ahmed K (2000) Antisense oligonucleotides against protein kinase CK2-α inhibit growth of squamous cell carcinoma of the head and neck in vitro. Head Neck 22(4):341–346, doi:10.1002/1097-0347(200007)22:4<341::AID-HED5>3.0.CO;2–3 [pii]

    CAS  PubMed  Google Scholar 

  73. Slaton JW, Unger GM, Sloper DT, Davis AT, Ahmed K (2004) Induction of apoptosis by antisense CK2 in human prostate cancer xenograft model. Mol Cancer Res 2(12):712–721

    CAS  PubMed  Google Scholar 

  74. Ahmad KA, Wang G, Slaton J, Unger G, Ahmed K (2005) Targeting CK2 for cancer therapy. Anticancer Drugs 16(10):1037–1043. doi:10.1097/00001813-200511000-00001

    CAS  PubMed  Google Scholar 

  75. Unger GM, Kren BT, Korman VL, Kimbrough TG, Vogel RI, Ondrey FG, Trembley JH, Ahmed K (2014) Mechanism and efficacy of sub-50-nm tenfibgen nanocapsules for cancer cell-directed delivery of anti-CK2 RNAi to primary and metastatic squamous cell carcinoma. Mol Cancer Ther 13(8):2018–2029. doi:10.1158/1535-7163.MCT-14-0166, 1535-7163.MCT-14-0166 [pii]

    CAS  PubMed  Google Scholar 

  76. Trembley JH, Unger GM, Korman VL, Tobolt DK, Kazimierczuk Z, Pinna LA, Kren BT, Ahmed K (2012) Nanoencapsulated anti-CK2 small molecule drug or siRNA specifically targets malignant cancer but not benign cells. Cancer Lett 315(1):48–58. doi:10.1016/j.canlet.2011.10.007

    PubMed Central  CAS  PubMed  Google Scholar 

  77. Trembley JH, Chen Z, Unger G, Slaton J, Kren BT, Van Waes C, Ahmed K (2010) Emergence of protein kinase CK2 as a key target in cancer therapy. Biofactors 36(3):187–195. doi:10.1002/biof.96

    PubMed Central  CAS  PubMed  Google Scholar 

  78. St-Denis NA, Litchfield DW (2009) Protein kinase CK2 in health and disease: From birth to death: the role of protein kinase CK2 in the regulation of cell proliferation and survival. Cell Mol Life Sci 66(11–12):1817–1829

    CAS  PubMed  Google Scholar 

  79. Khan N, Afaq F, Saleem M, Ahmad N, Mukhtar H (2006) Targeting multiple signaling pathways by green tea polyphenol (−)-epigallocatechin-3-gallate. Cancer Res 66(5):2500–2505. doi:10.1158/0008-5472.CAN-05-3636, 66/5/2500 [pii]

    CAS  PubMed  Google Scholar 

  80. Siddiqui IA, Adhami VM, Bharali DJ, Hafeez BB, Asim M, Khwaja SI, Ahmad N, Cui H, Mousa SA, Mukhtar H (2009) Introducing nanochemoprevention as a novel approach for cancer control: proof of principle with green tea polyphenol epigallocatechin-3-gallate. Cancer Res 69(5):1712–1716. doi:10.1158/0008-5472.CAN-08-3978, 0008-5472.CAN-08-3978 [pii]

    PubMed Central  CAS  PubMed  Google Scholar 

  81. Ahmad KA, Harris NH, Johnson AD, Lindvall HC, Wang G, Ahmed K (2007) Protein kinase CK2 modulates apoptosis induced by resveratrol and epigallocatechin-3-gallate in prostate cancer cells. Mol Cancer Ther 6(3):1006–1012. doi:10.1158/1535-7163.MCT-06-0491

    CAS  PubMed  Google Scholar 

  82. Shukla S, Mishra A, Fu P, MacLennan GT, Resnick MI, Gupta S (2005) Up-regulation of insulin-like growth factor binding protein-3 by apigenin leads to growth inhibition and apoptosis of 22Rv1 xenograft in athymic nude mice. FASEB J 19(14):2042–2044. doi:10.1096/fj.05-3740fje

    CAS  PubMed  Google Scholar 

  83. Cobb LJ, Mehta H, Cohen P (2009) Enhancing the apoptotic potential of insulin-like growth factor-binding protein-3 in prostate cancer by modulation of CK2 phosphorylation. Mol Endocrinol 23(10):1624–1633. doi:10.1210/me.2008-0365

    PubMed Central  CAS  PubMed  Google Scholar 

  84. Gerber DA, Souquere-Besse S, Puvion F, Dubois MF, Bensaude O, Cochet C (2000) Heat-induced relocalization of protein kinase CK2. Implication of CK2 in the context of cellular stress. J Biol Chem 275(31):23919–23926. doi:10.1074/jbc.M002697200

    CAS  PubMed  Google Scholar 

  85. Davis AT, Wang H, Zhang P, Ahmed K (2002) Heat shock mediated modulation of protein kinase CK2 in the nuclear matrix. J Cell Biochem 85(3):583–591. doi:10.1002/jcb.10158

    CAS  PubMed  Google Scholar 

  86. Yamane K, Kinsella TJ (2005) CK2 inhibits apoptosis and changes its cellular localization following ionizing radiation. Cancer Res 65(10):4362–4367. doi:10.1158/0008-5472.CAN-04-3941

    CAS  PubMed  Google Scholar 

  87. Kato T Jr, Delhase M, Hoffmann A, Karin M (2003) CK2 is a C-terminal IkappaB kinase responsible for NF-kappaB activation during the UV response. Mol Cell 12(4):829–839, doi:S1097276503003587 [pii]

    CAS  PubMed  Google Scholar 

  88. Ravi R, Bedi A (2002) Sensitization of tumor cells to Apo2 ligand/TRAIL-induced apoptosis by inhibition of casein kinase II. Cancer Res 62(15):4180–4185

    CAS  PubMed  Google Scholar 

  89. Izeradjene K, Douglas L, Delaney A, Houghton JA (2004) Influence of casein kinase II in tumor necrosis factor-related apoptosis-inducing ligand-induced apoptosis in human rhabdomyosarcoma cells. Clin Cancer Res 10(19):6650–6660. doi:10.1158/1078-0432.CCR-04-0576, 10/19/6650 [pii]

    CAS  PubMed  Google Scholar 

  90. Izeradjene K, Douglas L, Delaney A, Houghton JA (2005) Casein kinase II (CK2) enhances death-inducing signaling complex (DISC) activity in TRAIL-induced apoptosis in human colon carcinoma cell lines. Oncogene 24(12):2050–2058. doi:10.1038/sj.onc.1208397, 1208397 [pii]

    CAS  PubMed  Google Scholar 

  91. Wang G, Ahmad KA, Ahmed K (2006) Role of protein kinase CK2 in the regulation of tumor necrosis factor-related apoptosis inducing ligand-induced apoptosis in prostate cancer cells. Cancer Res 66(4):2242–2249. doi:10.1158/0008-5472.CAN-05-2772, 66/4/2242 [pii]

    CAS  PubMed  Google Scholar 

  92. Hessenauer A, Schneider CC, Götz C, Montenarh M (2011) CK2 inhibition induces apoptosis via the ER stress response. Cell Signal 23(1):145–151. doi:10.1016/j.cellsig.2010.08.014

    CAS  PubMed  Google Scholar 

  93. Desagher S, Osen-Sand A, Montessuit S, Magnenat E, Vilbois F, Hochmann A, Journot L, Antonsson B, Martinou JC (2001) Phosphorylation of bid by casein kinases I and II regulates its cleavage by caspase 8. Mol Cell 8(3):601–611, doi:S1097-2765(01)00335-5 [pii]

    CAS  PubMed  Google Scholar 

  94. Li PF, Li J, Muller EC, Otto A, Dietz R, von Harsdorf R (2002) Phosphorylation by protein kinase CK2: a signaling switch for the caspase-inhibiting protein ARC. Mol Cell 10(2):247–258, doi:S1097276502006007 [pii]

    CAS  PubMed  Google Scholar 

  95. McDonnell MA, Abedin MJ, Melendez M, Platikanova TN, Ecklund JR, Ahmed K, Kelekar A (2008) Phosphorylation of murine caspase-9 by the protein kinase casein kinase 2 regulates its cleavage by caspase-8. J Biol Chem 283(29):20149–20158. doi:10.1074/jbc.M802846200

    PubMed Central  CAS  PubMed  Google Scholar 

  96. Cardone MH, Roy N, Stennicke HR, Salvesen GS, Franke TF, Stanbridge E, Frisch S, Reed JC (1998) Regulation of cell death protease caspase-9 by phosphorylation. Science 282(5392):1318–1321

    CAS  PubMed  Google Scholar 

  97. Di Maira G, Salvi M, Arrigoni G, Marin O, Sarno S, Brustolon F, Pinna LA, Ruzzene M (2005) Protein kinase CK2 phosphorylates and upregulates Akt/PKB. Cell Death Differ 12(6):668–677. doi:10.1038/sj.cdd.4401604, 4401604 [pii]

    PubMed  Google Scholar 

  98. Siddiqui-Jain A, Drygin D, Streiner N, Chua P, Pierre F, O’Brien SE, Bliesath J, Omori M, Huser N, Ho C, Proffitt C, Schwaebe MK, Ryckman DM, Rice WG, Anderes K (2010) CX-4945, an orally bioavailable selective inhibitor of protein kinase CK2, inhibits prosurvival and angiogenic signaling and exhibits antitumor efficacy. Cancer Res 70(24):10288–10298. doi:10.1158/0008-5472.can-10-1893

    CAS  PubMed  Google Scholar 

  99. Turowec JP, Duncan JS, Gloor GB, Litchfield DW (2011) Regulation of caspase pathways by protein kinase CK2: identification of proteins with overlapping CK2 and caspase consensus motifs. Mol Cell Biochem 356(1–2):159–167. doi:10.1007/s11010-011-0972-5

    CAS  PubMed  Google Scholar 

  100. Duncan JS, Turowec JP, Duncan KE, Vilk G, Wu C, Luscher B, Li SS, Gloor GB, Litchfield DW (2011) A peptide-based target screen implicates the protein kinase CK2 in the global regulation of caspase signaling. Sci Signal 4(172):ra30. doi:10.1126/scisignal.2001682

    PubMed  Google Scholar 

  101. Reed JC (2002) Apoptosis-based therapies. Nat Rev Drug Discov 1(2):111–121. doi:10.1038/nrd726

    CAS  PubMed  Google Scholar 

  102. Salvesen GS, Duckett CS (2002) IAP proteins: blocking the road to death’s door. Nat Rev Mol Cell Biol 3(6):401–410. doi:10.1038/nrm830

    CAS  PubMed  Google Scholar 

  103. Altieri DC (2010) Survivin and IAP proteins in cell-death mechanisms. Biochem J 430(2):199–205. doi:10.1042/bj20100814

    PubMed Central  CAS  PubMed  Google Scholar 

  104. McEleny KR, Watson RW, Coffey RN, O’Neill AJ, Fitzpatrick JM (2002) Inhibitors of apoptosis proteins in prostate cancer cell lines. Prostate 51(2):133–140. doi:10.1002/pros.10061

    CAS  PubMed  Google Scholar 

  105. Finlay D, Vamos M, Gonzalez-Lopez M, Ardecky RJ, Ganji SR, Yuan H, Su Y, Cooley TR, Hauser CT, Welsh K, Reed JC, Cosford ND, Vuori K (2014) Small-molecule IAP antagonists sensitize cancer cells to TRAIL-induced apoptosis: roles of XIAP and cIAPs. Mol Cancer Ther 13(1):5–15. doi:10.1158/1535-7163.MCT-13-0153, 1535-7163.MCT-13-0153 [pii]

    PubMed Central  CAS  PubMed  Google Scholar 

  106. Rodriguez-Berriguete G, Fraile B, de Bethencourt FR, Prieto-Folgado A, Bartolome N, Nunez C, Prati B, Martinez-Onsurbe P, Olmedilla G, Paniagua R, Royuela M (2010) Role of IAPs in prostate cancer progression: immunohistochemical study in normal and pathological (benign hyperplastic, prostatic intraepithelial neoplasia and cancer) human prostate. BMC Cancer 10:18. doi:10.1186/1471-2407-10-18, 1471-2407-10-18 [pii]

    PubMed Central  PubMed  Google Scholar 

  107. Tapia JC, Torres VA, Rodriguez DA, Leyton L, Quest AF (2006) Casein kinase 2 (CK2) increases survivin expression via enhanced beta-catenin-T cell factor/lymphoid enhancer binding factor-dependent transcription. Proc Natl Acad Sci U S A 103(41):15079–15084. doi:10.1073/pnas.0606845103, 0606845103 [pii]

    PubMed Central  CAS  PubMed  Google Scholar 

  108. Ponce DP, Yefi R, Cabello P, Maturana JL, Niechi I, Silva E, Galindo M, Antonelli M, Marcelain K, Armisen R, Tapia JC (2011) CK2 functionally interacts with AKT/PKB to promote the beta-catenin-dependent expression of survivin and enhance cell survival. Mol Cell Biochem 356(1–2):127–132. doi:10.1007/s11010-011-0965-4

    CAS  PubMed  Google Scholar 

  109. Barrett RM, Colnaghi R, Wheatley SP (2011) Threonine 48 in the BIR domain of survivin is critical to its mitotic and anti-apoptotic activities and can be phosphorylated by CK2 in vitro. Cell Cycle 10(3):538–548

    PubMed Central  CAS  PubMed  Google Scholar 

  110. Wang G, Ahmad KA, Harris NH, Ahmed K (2008) Impact of protein kinase CK2 on inhibitor of apoptosis proteins in prostate cancer cells. Mol Cell Biochem 316(1–2):91–97. doi:10.1007/s11010-008-9810-9

    CAS  PubMed  Google Scholar 

  111. Stauber RH, Mann W, Knauer SK (2007) Nuclear and cytoplasmic survivin: molecular mechanism, prognostic, and therapeutic potential. Cancer Res 67(13):5999–6002. doi:10.1158/0008-5472.CAN-07-0494, 67/13/5999 [pii]

    CAS  PubMed  Google Scholar 

  112. Olsen BB, Jessen V, Hojrup P, Issinger OG, Boldyreff B (2003) Protein kinase CK2 phosphorylates the Fas-associated factor FAF1 in vivo and influences its transport into the nucleus. FEBS Lett 546(2–3):218–222, doi:S0014579303005751 [pii]

    CAS  PubMed  Google Scholar 

  113. Channavajhala P, Seldin DC (2002) Functional interaction of protein kinase CK2 and c-Myc in lymphomagenesis. Oncogene 21(34):5280–5288. doi:10.1038/sj.onc.1205640

    CAS  PubMed  Google Scholar 

  114. Krippner-Heidenreich A, Talanian RV, Sekul R, Kraft R, Thole H, Ottleben H, Luscher B (2001) Targeting of the transcription factor Max during apoptosis: phosphorylation-regulated cleavage by caspase-5 at an unusual glutamic acid residue in position P1. Biochem J 358(Pt 3):705–715

    PubMed Central  CAS  PubMed  Google Scholar 

  115. Loizou JI, El-Khamisy SF, Zlatanou A, Moore DJ, Chan DW, Qin J, Sarno S, Meggio F, Pinna LA, Caldecott KW (2004) The protein kinase CK2 facilitates repair of chromosomal DNA single-strand breaks. Cell 117(1):17–28, doi:S0092867404002065 [pii]

    CAS  PubMed  Google Scholar 

  116. Pierre F, Chua PC, O’Brien SE, Siddiqui-Jain A, Bourbon P, Haddach M, Michaux J, Nagasawa J, Schwaebe MK, Stefan E, Vialettes A, Whitten JP, Chen TK, Darjania L, Stansfield R, Bliesath J, Drygin D, Ho C, Omori M, Proffitt C, Streiner N, Rice WG, Ryckman DM, Anderes K (2011) Pre-clinical characterization of CX-4945, a potent and selective small molecule inhibitor of CK2 for the treatment of cancer. Mol Cell Biochem 356(1–2):37–43. doi:10.1007/s11010-011-0956-5

    CAS  PubMed  Google Scholar 

  117. Meek DW, Cox M (2011) Induction and activation of the p53 pathway: a role for the protein kinase CK2? Mol Cell Biochem. doi:10.1007/s11010-011-0966-3

    PubMed  Google Scholar 

  118. Allende-Vega N, McKenzie L, Meek D (2008) Transcription factor TAFII250 phosphorylates the acidic domain of Mdm2 through recruitment of protein kinase CK2. Mol Cell Biochem 316(1–2):99–106. doi:10.1007/s11010-008-9816-3

    CAS  PubMed  Google Scholar 

  119. Scaglioni PP, Yung TM, Cai LF, Erdjument-Bromage H, Kaufman AJ, Singh B, Teruya-Feldstein J, Tempst P, Pandolfi PP (2006) A CK2-dependent mechanism for degradation of the PML tumor suppressor. Cell 126(2):269–283. doi:10.1016/j.cell.2006.05.041, S0092-8674(06)00814-2 [pii]

    CAS  PubMed  Google Scholar 

  120. Scaglioni PP, Yung TM, Choi S, Baldini C, Konstantinidou G, Pandolfi PP (2008) CK2 mediates phosphorylation and ubiquitin-mediated degradation of the PML tumor suppressor. Mol Cell Biochem 316(1–2):149–154. doi:10.1007/s11010-008-9812-7

    CAS  PubMed  Google Scholar 

  121. Vazquez F, Grossman SR, Takahashi Y, Rokas MV, Nakamura N, Sellers WR (2001) Phosphorylation of the PTEN tail acts as an inhibitory switch by preventing its recruitment into a protein complex. J Biol Chem 276(52):48627–48630. doi:10.1074/jbc.C100556200

    CAS  PubMed  Google Scholar 

  122. Wang D, Westerheide SD, Hanson JL, Baldwin AS Jr (2000) Tumor necrosis factor alpha-induced phosphorylation of RelA/p65 on Ser529 is controlled by casein kinase II. J Biol Chem 275(42):32592–32597. doi:10.1074/jbc.M001358200, M001358200 [pii]

    CAS  PubMed  Google Scholar 

  123. Pando MP, Verma IM (2000) Signal-dependent and -independent degradation of free and NF-κB bound IκB-α. J Biol Chem 275(28):21278–21286. doi:10.1074/jbc.M002532200, M002532200 [pii]

    CAS  PubMed  Google Scholar 

  124. McElhinny JA, Trushin SA, Bren GD, Chester N, Paya CV (1996) Casein kinase II phosphorylates I kappa B alpha at S-283, S-289, S-293, and T-291 and is required for its degradation. Mol Cell Biol 16(3):899–906

    PubMed Central  CAS  PubMed  Google Scholar 

  125. Romieu-Mourez R, Landesman-Bollag E, Seldin DC, Traish AM, Mercurio F, Sonenshein GE (2001) Roles of IKK kinases and protein kinase CK2 in activation of nuclear factor-κB in breast cancer. Cancer Res 61(9):3810–3818

    CAS  PubMed  Google Scholar 

  126. Romieu-Mourez R, Landesman-Bollag E, Seldin DC, Sonenshein GE (2002) Protein kinase CK2 promotes aberrant activation of nuclear factor-{kappa}B, transformed phenotype, and survival of breast cancer cells. Cancer Res 62(22):6770–6778

    CAS  PubMed  Google Scholar 

  127. Dominguez I, Sonenshein GE, Seldin DC (2009) Protein kinase CK2 in health and disease: CK2 and its role in Wnt and NF-kappaB signaling: linking development and cancer. Cell Mol Life Sci 66(11–12):1850–1857. doi:10.1007/s00018-009-9153-z

    PubMed Central  CAS  PubMed  Google Scholar 

  128. Trembley JH, Unger GM, Tobolt DK, Korman VL, Wang G, Ahmad KA, Slaton JW, Kren BT, Ahmed K (2011) Systemic administration of antisense oligonucleotides simultaneously targeting CK2alpha and alpha′ subunits reduces orthotopic xenograft prostate tumors in mice. Mol Cell Biochem 356(1–2):21–35. doi:10.1007/s11010-011-0943-x

    PubMed Central  CAS  PubMed  Google Scholar 

  129. Trembley JH, Unger GM, Korman VL, Abedin MJ, Nacusi LP, Vogel RI, Slaton JW, Kren BT, Ahmed K (2014) Tenfibgen ligand nanoencapsulation delivers bi-functional anti-CK2 RNAi oligomer to key sites for prostate cancer targeting using human xenograft tumors in mice. PLoS One 9(10):e109970. doi:10.1371/journal.pone.0109970

    PubMed Central  PubMed  Google Scholar 

  130. Zheng Y, McFarland BC, Drygin D, Yu H, Bellis SL, Kim H, Bredel M, Benveniste EN (2013) Targeting protein kinase CK2 suppresses pro-survival signaling pathways and growth of glioblastoma. Clin Cancer Res. doi:10.1158/1078-0432.CCR-13-0265

    Google Scholar 

  131. Gray GK, McFarland BC, Rowse AL, Gibson SA, Benveniste EN (2014) Therapeutic CK2 inhibition attenuates diverse prosurvival signaling cascades and decreases cell viability in human breast cancer cells. Oncotarget 5(15):6484–6496, doi:2248 [pii]

    PubMed Central  PubMed  Google Scholar 

  132. Zheng Y, Qin H, Frank SJ, Deng L, Litchfield DW, Tefferi A, Pardanani A, Lin FT, Li J, Sha B, Benveniste EN (2011) A CK2-dependent mechanism for activation of the JAK-STAT signaling pathway. Blood 118(1):156–166. doi:10.1182/blood-2010-01-266320

    PubMed Central  CAS  PubMed  Google Scholar 

  133. Perera Y, Farina HG, Gil J, Rodriguez A, Benavent F, Castellanos L, Gomez RE, Acevedo BE, Alonso DF, Perea SE (2009) Anticancer peptide CIGB-300 binds to nucleophosmin/B23, impairs its CK2-mediated phosphorylation, and leads to apoptosis through its nucleolar disassembly activity. Mol Cancer Ther 8(5):1189–1196. doi:10.1158/1535-7163.MCT-08-1056

    CAS  PubMed  Google Scholar 

  134. Wang G, Pan Y, Ahmad KA, Ahmed K (2010) Protein B23/nucleophosmin/numatrin nuclear dynamics in relation to protein kinase CK2 and apoptotic activity in prostate cells. Biochemistry (Mosc) 49(18):3842–3852. doi:10.1021/bi9021928

    CAS  Google Scholar 

  135. Ahmad KA, Wang G, Ahmed K (2006) Intracellular hydrogen peroxide production is an upstream event in apoptosis induced by down-regulation of casein kinase 2 in prostate cancer cells. Mol Cancer Res 4(5):331–338. doi:10.1158/1541-7786.MCR-06-0073

    CAS  PubMed  Google Scholar 

  136. Hanif IM, Ahmad KA, Ahmed K, Pervaiz S (2009) Involvement of reactive oxygen species in apoptosis induced by pharmacological inhibition of protein kinase CK2. Ann N Y Acad Sci 1171:591–599. doi:10.1111/j.1749-6632.2009.04916.x

    CAS  PubMed  Google Scholar 

  137. Qaiser F, Trembley JH, Kren BT, Wu JJ, Naveed AK, Ahmed K (2014) Protein kinase CK2 inhibition induces cell death via early impact on mitochondrial function. J Cell Biochem 115(12):2103–2115. doi:10.1002/jcb.24887

    CAS  PubMed  Google Scholar 

  138. Perry SW, Norman JP, Barbieri J, Brown EB, Gelbard HA (2011) Mitochondrial membrane potential probes and the proton gradient: a practical usage guide. Biotechniques 50(2):98–115. doi:10.2144/000113610

    PubMed Central  CAS  PubMed  Google Scholar 

  139. Lemasters JJ, Theruvath TP, Zhong Z, Nieminen AL (2009) Mitochondrial calcium and the permeability transition in cell death. Biochim Biophys Acta 1787(11):1395–1401. doi:10.1016/j.bbabio.2009.06.009

    PubMed Central  CAS  PubMed  Google Scholar 

  140. Isenberg JS, Klaunig JE (2000) Role of the mitochondrial membrane permeability transition (MPT) in rotenone-induced apoptosis in liver cells. Toxicol Sci 53(2):340–351

    CAS  PubMed  Google Scholar 

  141. Stavrovskaya IG, Kristal BS (2005) The powerhouse takes control of the cell: is the mitochondrial permeability transition a viable therapeutic target against neuronal dysfunction and death? Free Radic Biol Med 38(6):687–697. doi:10.1016/j.freeradbiomed.2004.11.032

    CAS  PubMed  Google Scholar 

  142. Pinna LA, Allende JE (2009) Protein kinase CK2 in health and disease: Protein kinase CK2: an ugly duckling in the kinome pond. Cell Mol Life Sci 66(11–12):1795–1799. doi:10.1007/s00018-009-9148-9

    CAS  PubMed  Google Scholar 

  143. Perea SE, Baladron I, Garcia Y, Perera Y, Lopez A, Soriano JL et al (2011) CIGB-300, a synthetic peptide-based drug that targets the CK2 phosphoacceptor domain. Translational and clinical research. Mol Cell Biochem 356:45–50. doi:10.1007/s11010-011-0950-y

    CAS  PubMed  Google Scholar 

  144. Unger G, Trembley J, Kren B, Ahmed K (2012) Nanoparticles in cancer therapy. Encyclopedia of cancer: SpringerReference (www.springerreference.com). Springer-Verlag Berlin Heidelberg, Heidelberg. doi:10.1007/SpringerReference_175620 2012-03-05 10:28:01 UTC

    Google Scholar 

  145. Filhol O, Cochet C (2009) Protein kinase CK2 in health and disease: Cellular functions of protein kinase CK2: a dynamic affair. Cell Mol Life Sci 66(11–12):1830–1839. doi:10.1007/s00018-009-9151-1

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The original work in the authors’ laboratory was supported in part by the US Department of Veterans Affairs Merit Review Program, grant number I01BX001731 (K.A.), Department of Health and Human Services, and National Cancer Institute, grant numbers R01CA150182, R01CA15062 (K.A.), and R21CA158730 (B.T.K.). One of us (K.A.) would like to dedicate this work to the memory of AHU and GS.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Khalil Ahmed .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Trembley, J.H., Qaiser, F., Kren, B.T., Ahmed, K. (2015). CK2: A Global Regulator of Cell Death. In: Ahmed, K., Issinger, OG., Szyszka, R. (eds) Protein Kinase CK2 Cellular Function in Normal and Disease States. Advances in Biochemistry in Health and Disease, vol 12. Springer, Cham. https://doi.org/10.1007/978-3-319-14544-0_10

Download citation

Publish with us

Policies and ethics