Skip to main content

Phytoextraction of Heavy Metals: The Potential Efficiency of Conifers

  • Chapter
Heavy Metal Contamination of Soils

Part of the book series: Soil Biology ((SOILBIOL,volume 44))

Abstract

Phytoextraction of heavy metals is a technology that is increasingly studied for several years since it is more ecological and cheaper than chemical cleaning. The first plant species used for this process were hyperaccumulators, i.e., plants that are able to store particularly high amounts of heavy metals in aboveground organs. Hyperaccumulators are mainly herbaceous species; therefore, woody species now represent attractive models since they have a higher biomass and a more important root system to decontaminate soils deeper than herbaceous plants. Currently, research is mainly focused on angiosperm trees with a high growth rate such as poplars or willows. However, conifers could be an interesting species under certain conditions, particularly for polluted sites localized in cold areas. This chapter provides an update on studies related to the phytoextraction of heavy metals by conifers. It presents physiological responses of conifers to these pollutants, distribution of heavy metals in these trees, and the efficiency of phytoextraction. Moreover, several strategies are possible to improve the process of phytoextraction (bioavailability of heavy metals in soils and root absorption) and are thus presented in this chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ahonen-Jonnarth U, Finlay RD (2001) Effects of elevated nickel and cadmium concentrations on growth and nutrient uptake of mycorrhizal and non-mycorrhizal Pinus sylvestris seedlings. Plant Soil 236:129–138

    CAS  Google Scholar 

  • Arduini I, Godbold DL, Onnis A (1995) Influence of copper on root growth and morphology of Pinus pinea L. and Pinus pinaster Ait. Seedlings. Tree Physiol 15:411–415

    CAS  PubMed  Google Scholar 

  • Astier C, Gloaguen V, Faugeron C (2014) Phytoremediation of cadmium-contaminated soils by young Douglas fir trees: effects of cadmium exposure on cell wall composition. Int J Phytoremediation 16:790–803

    CAS  PubMed  Google Scholar 

  • Babu AG, Shea PJ, Oh BT (2014) Trichoderma sp. PDR1-7 promotes Pinus sylvestris reforestation of lead-contaminated mine tailing sites. Sci Total Environ 476–477:561–567

    PubMed  Google Scholar 

  • Baker AJM, Brooks RR (1989) Terrestrial higher plants which hyperaccumulate metallic elements: a review of their distribution, ecology and phytochemistry. Biorecovery 1:81–126

    CAS  Google Scholar 

  • Bastien JC, Keller R (1980) Intérêts comparés du mélèze hybride (Larix x eurolepis Henry) avec les deux espèces parents. Revue Forestière Française 6:521–530

    Google Scholar 

  • Bergqvist C, Greger M (2012) Arsenic accumulation and speciation in plants from different habitats. Appl Geochem 27:615–622

    CAS  Google Scholar 

  • Bindler R, Brännvall ML, Renberg I (1999) Natural lead concentrations in Pristine boreal forest soils and past pollution trends: a reference for critical load models. Environ Sci Technol 33:3362–3367

    CAS  Google Scholar 

  • Bittsánszky A, Kömives T, Gullner G, Gyulai G, Kiss J, Heszky L, Radimszky L, Rennenberg H (2005) Ability of transgenic poplars with elevated glutathione content to tolerate zinc(2+) stress. Environ Int 31:251–254

    PubMed  Google Scholar 

  • Callahan DL, Roessner U, Dumontet V, Perrier V, Wedd AG, O’Hair RAJ, Baker AJM, Kolev SD (2008) LC–MS and GC–MS metabolite profiling of nickel(II) complexes in the latex of the nickel-hyperaccumulating tree Sebertia acuminata and identification of methylated aldaric acid as a new nickel(II) ligand. Phytochemistry 69:240–251

    CAS  PubMed  Google Scholar 

  • Carnicer J, Barbeta A, Sperlich D, Coll M, Peñuelas J (2013) Contrasting trait syndromes in angiosperms and conifers are associated with different responses of tree growth to temperature on a large scale. Front Plant Sci 4(409):1–19

    Google Scholar 

  • Čeburnis D, Steinnes E (2000) Conifer needles as biomonitors of atmospheric heavy metal deposition: comparison with mosses and precipitation, role of the canopy. Atmos Environ 34:4265–4271

    Google Scholar 

  • Ćurguz VG, Raičević V, Veselinović M, Tabakovic-Tošić M, Vilotić D (2012) Influence of heavy metals on seed germination and growth of Picea abies L. Karst Pol J Environ Stud 21(2):355–361

    Google Scholar 

  • Dai HP, Wei Y, Zhang YZ, Wei AZ, Yang TX (2012) Subcellular localization of cadmium in hyperaccumulator Populus × canescens. Afr J Biotechnol 11(16):3779–3787

    CAS  Google Scholar 

  • De Andrade LRM, Barros LMG, Echevarria GF, Velho do Amaral LI, Cotta MG, Rossatto DR, Haridasan M, Franco AC (2011) Al-hyperaccumulator Vochysiaceae from the Brazilian Cerrado store aluminum in their chloroplasts without apparent damage. Environ Exp Bot 70:37–42

    Google Scholar 

  • De Burbure C, Buchet JP, Leroyer A, Nisse C, Haguenoer JM, Mutti A, Smerhovsky Z, Cikrt M, Trzcinka-Ochocka M, Razniewska G, Jakubowski M, Bernard A (2006) Renal and neurologic effects of cadmium, lead, mercury, and arsenic in children: evidence of early effects and multiple interactions at environmental exposure levels. Environ Health Perspect 144:584–590

    Google Scholar 

  • Demidchik V (2014) Mechanisms of oxidative stress in plants: from classical chemistry to cell biology. Environ Exp Bot http://dx.doi.org/10.1016/j.envexpbot.2014.06.021

    Google Scholar 

  • Dermont G, Bergeron M, Mercier G, Richer-Laflèche M (2008) Soil washing for metal removal: a review of physical/chemical technologies and field applications. J Hazard Mater 152:1–31

    CAS  PubMed  Google Scholar 

  • Di Lonardo S, Capuana M, Arnetoli M, Gabbrielli R, Gonnelli C (2011) Exploring the metal phytoremediation potential of three Populus alba L. clones using an in vitro screening. Environ Sci Pollut Res 18:82–90

    CAS  Google Scholar 

  • Disante K, Fuentes D, Cortina J (2010) Sensitivity to zinc of Mediterranean woody species important for restoration. Sci Total Environ 408:2216–2225

    CAS  PubMed  Google Scholar 

  • Dmuchowski W, Bytnerowicz A (1995) Monitoring environmental pollution in Poland by chemical analysis of Scots pine (Pinus sylvestris L.) needles. Environ Pollut 87:87–104

    CAS  PubMed  Google Scholar 

  • Do Nascimento CWA (2006) Organic acids effects on desorption of heavy metals from a contaminated soil. Sci Agric 63(3):276–280

    Google Scholar 

  • Do Nascimento CWA, Amarasiriwardena D, Xing B (2006) Comparison of natural organic acids and synthetic chelates at enhancing phytoextraction of metals from a multi-metal contaminated soil. Environ Pollut 140:114–123

    CAS  PubMed  Google Scholar 

  • Eapen S, D’Souza SF (2005) Prospects of genetic engineering of plants for phytoremediation of toxic metals. Biotechnol Adv 23:97–114

    CAS  PubMed  Google Scholar 

  • Edwards R, Dixon DP, Walbot V (2005) Plant glutathione S-transferases: enzymes with multiple functions in sickness and in health. Trends Plant Sci 5(5):193–198

    Google Scholar 

  • Fernando DR, Batianoff GN, Baker AJ, Woodrow IE (2006) In vivo localization of manganese in the hyperaccumulator Gossia bidwillii (Benth.) N. Snow & Guymer (Myrtaceae) by cryo-SEM/EDAX. Plant Cell Environ 29:1012–1020

    CAS  PubMed  Google Scholar 

  • Fernando E, Quimado M, Doronila A (2014) Rinorea niccolifera (Violaceae), a new, nickel-hyperaccumulating species from Luzon Island, Philippines. PhytoKeys 37:1–13

    PubMed  Google Scholar 

  • Fischerova Z, Tlustos P, Szakova J, Sichorova K (2006) A comparison of phytoremediation capability of selected plant species for given trace elements. Environ Pollut 144:93–100

    CAS  PubMed  Google Scholar 

  • Fuentes D, Disante KB, Valdecantos A, Cortina J, Vallejo VR (2007a) Sensitivity of Mediterranean woody seedlings to copper, nickel and zinc. Chemosphere 66:412–420

    CAS  PubMed  Google Scholar 

  • Fuentes D, Disante KB, Valdecantos A, Cortina J, Vallejo VR (2007b) Response of Pinus halepensis Mill. seedlings to biosolids enriched with Cu, Ni and Zn in three Mediterranean forest soils. Environ Pollut 145:316–323

    CAS  PubMed  Google Scholar 

  • Galli U, Meier M, Brunold C (1993) Effects of cadmium on non-mycorrhizal and mycorrhizal Norway spruce seedlings Picea abies (L.) Karst.] and its ectomycorrhizal fungus Laccaria laccata (Scop, ex Fr.) Bk. & Br.: sulphate reduction, thiols and distribution of the heavy metal. New Phytol 125:837–843

    CAS  Google Scholar 

  • Gandoit L, Probst A (2012) Localisation and mobility of trace metal in silver fir needles. Chemosphere 87:204–210

    Google Scholar 

  • Ghosh M, Singh SP (2005) A review on phytoremediation of heavy metals and utilization of its byproducts. Appl Ecol Environ Res 3:1–18

    Google Scholar 

  • Godbold DL, Jentschke G, Winter S, Marschner P (1998) Ectomycorrhizas and amelioration of metal stress in forest trees. Chemosphere 36(4–5):757–762

    CAS  Google Scholar 

  • Grill E, Winnacker EL, Zenk MH (1985) Phytochelatins: the principal heavy-metal complexing peptides of plants. Science 230:674–676

    CAS  PubMed  Google Scholar 

  • Hamanishi ET, Campbell MM (2011) Genome-wide responses to drought in forest trees. Forestry 84(3):273–283

    Google Scholar 

  • Hassinen V, Vallinkoski VM, Issakainen S, Tervahauta A, Kärenlampi S, Servomaa K (2009) Correlation of foliar MT2b expression with Cd and Zn concentrations in hybrid aspen (Populus tremula x tremuloides) grown in contaminated soil. Environ Pollut 157:922–930

    CAS  PubMed  Google Scholar 

  • He J, Ma C, Ma Y, Li H, Kang J, Liu T, Polle A, Peng C, Luo ZB (2013) Cadmium tolerance in six poplar species. Environ Sci Pollut Res Int 20(1):165–174

    CAS  Google Scholar 

  • Hodson MJ, Sangster AG (1999) Aluminium/silicon interactions in conifers. J Inorg Biochem 76:89–98

    CAS  Google Scholar 

  • Huang JW, Blaylock MJ, Kapulnik Y, Ensley BD (1998) Phytoremediation of uranium-contaminated soils: role of organic acids in triggering uranium hyperaccumulation in plants. Environ Sci Technol 32:2004–2008

    CAS  Google Scholar 

  • Ivanov YV, Savochkin YV, Kuznetsov VIV (2011) Scots pine as a model plant for studying the mechanisms of conifers adaptation to heavy metal action: 1. Effects of continuous zinc presence on morphometric and physiological characteristics of developing pine seedlings. Russ J Plant Physiol 58(5):871–878

    CAS  Google Scholar 

  • Ivanov YV, Savochkin YV, Kuznetsov VIV (2012) Scots pine as a model plant for studying the mechanisms of conifers adaptation to heavy metal action: 2. Functioning of antioxidant enzymes in pine seedlings under chronic zinc action. Russ J Plant Physiol 59(1):50–58

    CAS  Google Scholar 

  • Jaffré T, Brooks RR, Lee J, Reeves RD (1976) Sebertia acuminata: a hyperaccumulator of nickel from New Caledonia. Science 193:579–580

    PubMed  Google Scholar 

  • Jaffré T, Pillon Y, Thomine S, Merlot S (2013) The metal hyperaccumulators from New Caledonia can broaden our understanding of nickel accumulation in plants. Front Plant Sci 4(279):1–7

    Google Scholar 

  • Jambhulkar HP, Juwarkar AA (2009) Assessment of bioaccumulation of heavy metals by different plant species grown on fly ash dump. Ecotoxicol Environ Saf 72:1122–1128

    CAS  PubMed  Google Scholar 

  • Jarvis MD, Leung DWM (2002) Chelated lead transport in Pinus radiata: an ultrastructural study. Environ Exp Bot 48:21–32

    CAS  Google Scholar 

  • Jentschke G, Marschner P, Vodnik D, Marth C, Bredemeier M, Rapp C, Fritz E, Gogala N, Godbold DL (1998) Lead uptake by Picea abies seedlings: effects of nitrogen source and mycorrhizas. J Plant Physiol 153:97–10

    CAS  Google Scholar 

  • Jentschke G, Winter S, Godbold DL (1999) Ectomycorrhizas and cadmium toxicity in Norway spruce seedlings. Tree Physiol 19:23–30

    CAS  PubMed  Google Scholar 

  • Jones MD, Browning MHR, Hutchinson TC (1986) The influence of mycorrhizal associations on paper birch and Jack pine seedlings when exposed to elevated copper, nickel or aluminum. Water Air Soil Pollut 31:441–448

    CAS  Google Scholar 

  • Kiikkilä O (2003) Heavy-metal pollution and remediation of forest soil around the Harja valta Cu-Ni smelter, in SW Finland. Silva Fennica 37(3):399–415

    Google Scholar 

  • Kozdrój J, Piotrowska-Seget Z, Krupa P (2007) Mycorrhizal fungi and ectomycorrhiza associated bacteria isolated from an industrial desert soil protect pine seedlings against Cd(II) impact. Ecotoxicology 16:449–456

    PubMed  Google Scholar 

  • Krzesłowska M (2011) The cell wall in plant cell response to trace metals: polysaccharide remodeling and its role in defense strategy. Acta Physiol Plant 33(1):35–51

    Google Scholar 

  • Krznaric E, Verbruggen N, Wevers JHL, Carleer R, Vangronsveld J, Colpaert JV (2009) Cd-tolerant Suillus luteus: a fungal insurance for pines exposed to Cd. Environ Pollut 157:1581–1588

    CAS  PubMed  Google Scholar 

  • Krznaric E, Wevers JHL, Cloquet C, Vangronsveld J, Vanhaecke F, Colpaert JV (2010) Zn pollution counteracts Cd toxicity in metal-tolerant ectomycorrhizal fungi and their host plant, Pinus sylvestris. Environ Microbiol 12(8):2133–2141

    CAS  PubMed  Google Scholar 

  • Kukkola E, Rautio P, Huttunen S (2000) Stress indications in copper- and nickel-exposed Scots pine seedlings. Environ Exp Bot 43:197–210

    CAS  PubMed  Google Scholar 

  • Kuroda K, Kagawa A, Tonosaki M (2013) Radiocesium concentrations in the bark, sapwood and heartwood of three tree species collected at Fukushima forests half a year after the Fukushima Dai-ichi nuclear accident. J Environ Radioact 122:37–42

    CAS  PubMed  Google Scholar 

  • Leštan D, Luo CL, Li XD (2008) The use of chelating agents in the remediation of metal contaminated soils:a review. Environ Pollut 153:3–13

    PubMed  Google Scholar 

  • Leung HM, Wang ZW, Ye ZH, Yung KL, Peng XL, Cheung KC (2013) Interactions between arbuscular mycorrhizae and plants in phytoremediation of metal-contaminated soils: a review. Pedosphere 23(5):549–563

    CAS  Google Scholar 

  • Li JT, Liao B, Zhu R, Dai ZY, Lan CY, Shu WS (2011) Characteristics of Cd uptake, translocation and accumulation in a novel Cd-accumulating tree, star fruit (Averrhoa carambola L., Oxalidaceae). Environ Exp Bot 71:352–358

    CAS  Google Scholar 

  • Liang HM, Lin TH, Chiou JM, Yeh KC (2009) Model evaluation of the phytoextraction potential of heavy metal hyperaccumulators and non-hyperaccumulators. Environ Pollut 157:1945–1952

    CAS  PubMed  Google Scholar 

  • Ma JF, Ryan PR, Delhaize E (2001) Aluminium tolerance in plants and the complexing role of organic acids. Trends Plant Sci 6:273–278

    CAS  PubMed  Google Scholar 

  • Markkola AM, Tarvainen O, Ahonen-Jonnarth U, Strömmer R (2002) Urban polluted forest soils induce elevated root peroxidase activity in Scots pine (Pinus sylvestris L.) seedlings. Environ Pollut 116:273–278

    CAS  Google Scholar 

  • McGrath SP, Zhao FJ, Lombi E (2002) Phytoremediation of metals, metalloids and radionuclides. Adv Agron 75:1–56

    CAS  Google Scholar 

  • Mingorance MD, Valdés B, Oliva SR (2007) Strategies of heavy metal uptake by plants growing under industrial emissions. Environ Int 33:514–520

    CAS  PubMed  Google Scholar 

  • Minocha R, Long S (2004) Effects of aluminum on organic acid metabolism and secretion by red spruce cell suspension cultures and the reversal of Al effects on growth and polyamine metabolism by exogenous organic acids. Tree Physiol 24:55–64

    CAS  PubMed  Google Scholar 

  • Mizuno T, Hirano K, Kato S, Obata H (2008) Cloning of ZIP family metal transporter genes from the manganese hyperaccumulator plant Chengiopanax sciadophylloides, and its metal transport and resistance abilities in yeast. Soil Sci Plant Nutr 54:86–94

    CAS  Google Scholar 

  • Mohapatra S, Cherry S, Minocha R, Majumdar R, Thangavel P, Long S, Minocha SC (2010) The response of high and low polyamine-producing cell lines to aluminum and calcium stress. Plant Physiol Biochem 48:612–620

    CAS  PubMed  Google Scholar 

  • Monaci F, Moni F, Lanciotti E, Grechi D, Bargagli R (2000) Biomonitoring of airborne metals in urban environments: new tracers of vehicle emission, in place of lead. Environ Pollut 107:321–327

    CAS  PubMed  Google Scholar 

  • Moussavou Moudouma CF, Riou C, Gloaguen V, Saladin G (2013) Hybrid larch (Larix x eurolepis Henry): a good candidate for cadmium phytoremediation? Environ Sci Pollut Res 20(3):1889–1894

    Google Scholar 

  • Nowak J, Friend AL (2005) Aluminum fractions in root tips of slash pine and loblolly pine families differing in Al resistance. Tree Physiol 25:245–250

    CAS  PubMed  Google Scholar 

  • Nzihou A, Stanmore B (2013) The fate of heavy metals during combustion and gasification of contaminated biomass—a brief review. J Hazard Mater 256–257:56–66

    PubMed  Google Scholar 

  • Orlandi M, Pelfini M, Pavan M, Santilli M, Colombini MP (2002) Heavy metals variations in some conifers in Valle d’Aosta (Western Italian Alps) from 1930 to 2000. Microchem J 73:237–244

    CAS  Google Scholar 

  • Osawa H, Ikeda S, Tange T (2013) The rapid accumulation of aluminum is ubiquitous in both the evergreen and deciduous leaves of Theaceae and Ternstroemiaceae plants over a wide pH range in acidic soils. Plant Soil 363:49–59

    CAS  Google Scholar 

  • Pan H, Eberhard TL (2011) Characterization of fly ash from the gasification of wood and assessment for its application as a soil amendment. BioResources 6(4):3987–4004

    CAS  Google Scholar 

  • Peng HY, Yang X, Tian SK (2005) Accumulation and ultrastructural distribution of copper in Elsholtzia splendens. J Zhejiang Univ (Sci) 6B(5):311–318

    CAS  Google Scholar 

  • Potters G, Pasternak TP, Guisez Y, Palme KJ, Jansen MAK (2007) Stress-induced morphogenic responses: growing out of trouble? TRENDS Plant Sci 12(3):98–105

    CAS  PubMed  Google Scholar 

  • Prabagar S, Hodson MJ, Evans DE (2011) Silicon amelioration of aluminium toxicity and cell death in suspension cultures of Norway spruce (Picea abies (L.) Karst.). Environ Exp Bot 70:266–276

    CAS  Google Scholar 

  • Pratas J, Prasad MNV, Freitas H, Conde L (2005) Plants growing in abandoned mines of Portugal are useful for biogeochemical exploration of arsenic, antimony, tungsten and mine reclamation. J Geochem Explor 85:99–107

    CAS  Google Scholar 

  • Przybysz A, Sæbø A, Hanslin HM, Gawroński SW (2014) Accumulation of particulate matter and trace elements on vegetation as affected by pollution level, rainfall and the passage of time. Sci Total Environ 481:360–369

    CAS  PubMed  Google Scholar 

  • Pulford ID, Watson C (2003) Phytoremediation of heavy metal-contaminated land by trees—a review. Environ Int 29:529–540

    CAS  PubMed  Google Scholar 

  • Rabier J, Laffont-Schwob I, Bouraïma-Madjebi S, Leon V, Prudent P, Viano J, Nabors MW, Pilon-Smits EAH (2007) Characterization of metal tolerance and accumulation in Grevillea exul var exul. Int J Phytoremediation 9:419–435

    CAS  PubMed  Google Scholar 

  • Radotić K, Dučić T, Mutavdić D (2000) Changes in peroxidase activity and isoenzymes in spruce needles after exposure to different concentrations of cadmium. Environ Exp Bot 44:105–113

    PubMed  Google Scholar 

  • Raju D, Kumar S, Mehta UJ, Hazra S (2008) Differential accumulation of manganese in three mature tree species (Holoptelia, Cassia, Neem) growing on a mine dump. Curr Sci 94(5):639–643

    CAS  Google Scholar 

  • Rascio N, Navari-Izzo F (2011) Heavy metal hyperaccumulating plants: how and why do they do it? And what makes them so interesting? Plant Sci 180:169–181

    CAS  PubMed  Google Scholar 

  • Reeves RD, Baker AJM, Borhidi A, Berazaín R (1999) Nickel hyperaccumulation in the serpentine flora of Cuba. Ann Bot 83:29–38

    CAS  Google Scholar 

  • Reimann C, Koller F, Kashulina G, Niskavaara H, Englmaier P (2001) Influence of extreme pollution on the inorganic chemical composition of some plants. Environ Pollut 115:239–252

    CAS  PubMed  Google Scholar 

  • Robinson BH, Mills TM, Petit D, Fung LE, Green SR, Clothier BE (2000) Natural and induced cadmium-accumulation in poplar and willow: implications for phytoremediation. Plant Soil 227:301–306

    CAS  Google Scholar 

  • Rodriguez JH, Wannaz ED, Salazar MJ, Pignata ML, Fangmeier A, Franzaring J (2012) Accumulation of polycyclic aromatic hydrocarbons and heavy metals in the tree foliage of Eucalyptus rostrata, Pinus radiata and Populus hybridus in the vicinity of a large aluminium smelter in Argentina. Atmos Environ 55:35–42

    CAS  Google Scholar 

  • Saarela KE, Harju L, Rajander J, Lill JO, Heselius SJ, Lindroos A, Mattsson K (2005) Elemental analyses of pine bark and wood in an environmental study. Sci Total Environ 343:231–241

    CAS  PubMed  Google Scholar 

  • Sahi SV, Bryant NL, Sharma NC, Singh SR (2002) Characterization of a Lead hyperaccumulator shrub, Sesbania drummondii. Environ Sci Technol 36:4676–4680

    PubMed  Google Scholar 

  • Samecka-Cymerman A, Kolon K, Kempers AJ (2008) A preliminary investigation in using Pohlia nutans and Larix decidua as biomonitors of air pollution by the coke industry in Wałbrzych (SW Poland). Polish J Environ Stud 17(1):121–128

    CAS  Google Scholar 

  • Sarma H (2011) Metal hyperaccumulation in plants: a review focusing on phytoremediation technology. J Environ Sci Technol 4:118–138

    CAS  Google Scholar 

  • Sawidis T, Chettri MK, Papaioannou A, Zachariadis G, Stratis J (2001) Study of metal distribution from lignite fuels using trees as biological monitors. Ecotoxicol Environ Saf 48:27–35

    CAS  PubMed  Google Scholar 

  • Schröder P, Fisher C, Debus R, Wenzel A (2003) Reaction of detoxification mechanisms in suspension cultured spruce cells (Picea abies L. Karst.) to heavy metals in pure mixture and in soil eluates. Environ Sci Pollut Res 10(4):225–234

    Google Scholar 

  • Shim D, Kim S, Choi YI, Song WY, Park J, Youk ES, Jeong SC, Martinoia E, Noh EW, Lee Y (2013) Transgenic poplar trees expressing yeast cadmium factor 1 exhibit the characteristics necessary for the phytoremediation of mine tailing soil. Chemosphere 90:1478–1486

    CAS  PubMed  Google Scholar 

  • Shukla OP, Juwarkar AA, Singh SK, Khan S, Rai UN (2011) Growth responses and metal accumulation capabilities of woody plants during the phytoremediation of tannery sludge. Waste Manag 31:115–123

    CAS  PubMed  Google Scholar 

  • Sousa AI, Caçador I, Lillebo AI, Pardal MA (2008) Heavy metal accumulation in Halimione portulacoides: intra- and extra-cellular metal binding sites. Chemosphere 70:850–857

    CAS  PubMed  Google Scholar 

  • Sousa NR, Ramos MA, Marques APGC, Castro PML (2012) The effect of ectomycorrhizal fungi forming symbiosis with Pinus pinaster seedlings exposed to cadmium. Sci Total Environ 414:63–67

    CAS  PubMed  Google Scholar 

  • Sousa NR, Ramos MA, Marques APGC, Castro PML (2014) A genotype dependent-response to cadmium contamination in soil is displayed by Pinus pinaster in symbiosis with different mycorrhizal fungi. Appl Soil Ecol 76:7–13

    Google Scholar 

  • Steinnes E, Friedland AJ (2006) Metal contamination of natural surface soils from long-range atmospheric transport: existing and missing knowledge. Environ Rev 14:169–186

    CAS  Google Scholar 

  • Szabados L, Savouré A (2010) Proline: a multifunctional amino acid. Trends Plant Sci 15(2):89–97

    CAS  PubMed  Google Scholar 

  • Takenaka C, Kobayashi M, Kanaya S (2009) Accumulation of cadmium and zinc in Evodiopanax innovans. Environ Geochem Health 31:609–615

    CAS  PubMed  Google Scholar 

  • Thangavel P, Long S, Minocha R (2007) Changes in phytochelatins and their biosynthetic intermediates in red spruce (Picea rubens Sarg.) cell suspension cultures under cadmium and zinc stress. Plant Cell Tissue Organ Cult 88:201–216

    CAS  Google Scholar 

  • Turchi A, Tamantini I, Camussi AM, Racchi ML (2012) Expression of a metallothionein A1 gene of Pisum sativum in white poplar enhances tolerance and accumulation of zinc and copper. Plant Sci 183:50–56

    CAS  PubMed  Google Scholar 

  • Vaitkuté D, Baltrénaité E, Booth CA, Fullen MA (2010) Does sewage sludge amendment to soil enhances the development of Silver birch and Scots pine? Hung Geogr Bull 59(4):393–410

    Google Scholar 

  • Van der Ent A, Baker AJM, Reeves RD, Pollard AJ, Schat H (2012) Hyperaccumulators of metal and metalloid trace elements: facts and fiction. Plant Soil 362:319–334

    Google Scholar 

  • Vandecasteele B, Meers E, Vervaeke P, De Vos B, Quataert P, Tack FMG (2005) Growth and trace metal accumulation of two Salix clones on sediment-derived soils with increasing contamination levels. Chemosphere 58:995–1002

    CAS  PubMed  Google Scholar 

  • Vangronsveld J, Herzig R, Weyens N, Boulet J, Adriaensen K, Ruttens A, Thewys T, Vassilev A, Meers E, Nehnevajova E, van der Lelie D, Mench M (2009) Phytoremediation of contaminated soils and groundwater: lessons from the field. Environ Sci Pollut Res 16:765–794

    CAS  Google Scholar 

  • Venkatachalam P, Srivastava AK, Raghothama KG, Sahi SV (2009) Genes Induced in Response to Mercury-Ion-Exposure in Heavy Metal Hyperaccumulator Sesbania drummondii. Environ Sci Technol 43(3):843–850

    CAS  PubMed  Google Scholar 

  • Verbruggen N, Hermans C, Schat H (2009) Molecular mechanisms of metal hyperaccumulation in plants. New Phytol 181:759–776

    CAS  PubMed  Google Scholar 

  • Wang X, Jia Y (2010) Study on adsorption and remediation of heavy metals by poplar and larch in contaminated soil. Environ Sci Pollut Res 17:1331–1338

    CAS  Google Scholar 

  • Xue S, Wang J, Zhou X, Liu H, Chen Y (2010) A critical reappraisal of Phytolacca acinosa Roxb. (Phytolaccaceae)—a manganese-hyperaccumulating plant. Acta Ecol Sinica 30:335–338

    Google Scholar 

  • Yanai J, Zhao FJ, McGrath SP, Kosaki T (2006) Effect of soil characteristics on Cd uptake by the hyperaccumulator Thlaspi caerulescens. Environ Pollut 139:167–175

    CAS  PubMed  Google Scholar 

  • Yang JL, Li YY, Zhang YJ, Zhang SS, Wu YR, Wu P, Zheng SJ (2008a) Cell wall polysaccharides are specifically involved in the exclusion of aluminum from the rice root apex. Plant Physiol 146:602–661

    PubMed Central  CAS  PubMed  Google Scholar 

  • Yang SX, Deng H, Li MS (2008b) Manganese uptake and accumulation in a woody hyperaccumulator, Schima superba. Plant Soil Environ 54(10):441–446

    CAS  Google Scholar 

  • Zacchini M, Iori V, Scarascia Mugnozza G, Pietrini F, Massacci A (2011) Cadmium accumulation and tolerance in Populus nigra and Salix alba. Biol Plantarum 55:383–386

    CAS  Google Scholar 

  • Zu YQ, Yuan L, Schvartz C, Langlade L, Fan L (2004) Accumulation of Pb, Cd, Cu and Zn in plants and hyperaccumulator choice in Lanping lead–zinc mine area, China. Environ Int 30:567–576

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gaëlle Saladin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Saladin, G. (2015). Phytoextraction of Heavy Metals: The Potential Efficiency of Conifers. In: Sherameti, I., Varma, A. (eds) Heavy Metal Contamination of Soils. Soil Biology, vol 44. Springer, Cham. https://doi.org/10.1007/978-3-319-14526-6_18

Download citation

Publish with us

Policies and ethics