Skip to main content

A Hyperelastic Dynamic Frictional Contact Model with Energy-Consistent Properties

  • Chapter
  • First Online:
Advances in Variational and Hemivariational Inequalities

Part of the book series: Advances in Mechanics and Mathematics ((AMMA,volume 33))

Abstract

In this chapter we present an energy-consistent numerical model for the dynamic frictional contact between a hyperlastic body and a foundation. Our contribution has two traits of novelty. The first one arises from the specific frictional contact model we consider, which provides intrinsic energy-consistent properties. The contact is modeled with a normal compliance condition of such a type that the penetration is limited with unilateral constraint and, the friction is described with a version of Coulomb’s law of dry friction. The second trait of novelty consists in the construction and the analysis of an energy-consistent scheme, based on recent energy-controlling time integration methods for nonlinear elastodynamics. Some numerical results for representative impact problems are provided. They illustrate both the specific properties of the contact model and the energy-consistent properties of the numerical scheme.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Alart, P., Curnier, A.: A mixed formulation for frictional contact problems prone to Newton like solution methods. Comput. Methods Appl. Mech. Eng. 92, 353–375 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  2. Armero, F., Petocz, E.: Formulation and analysis of conserving algorithms for frictionless dynamic contact/impact problems. Comput. Methods Appl. Mech. Eng. 158, 269–300 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  3. Armero, F., Romero, I.: On the formulation of high-frequency dissipative time-stepping algorithms for nonlinear dynamics. Part II: second-order methods. Comput. Methods Appl. Mech. Eng. 190, 6783–6824 (2001)

    MATH  MathSciNet  Google Scholar 

  4. Ayyad, Y., Barboteu, M.: Formulation and analysis of two energy-consistent methods for nonlinear elastodynamic frictional contact problems. J. Comput. Appl. Math. 228, 254–269 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  5. Ayyad, Y., Barboteu, M., Fernández, J.R.: A frictionless viscoelastodynamic contact problem with energy-consistent properties: numerical analysis and computational aspects. Comput. Methods Appl. Mech. Eng. 198, 669–679 (2009)

    Article  MATH  Google Scholar 

  6. Barboteu, M.: An energy-conserving algorithm for non linear elastodynamic contact problems - extension to a frictional dissipation phenomenon. Analysis and Simulation of Contact Problems. In: Lecture Notes in Applied Computational Mechanics, vol. 27, pp. 71–78. Springer, Berlin/Heidelberg (2005)

    Google Scholar 

  7. Barboteu, M., Matei, A., Sofonea, M.: Analysis of quasistatic viscoplastic contact problems with normal compliance. Q. J. Mech. Appl. Math. 65, 555–579 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  8. Barboteu, M., Bartosz, K., Kalita, P.: An analytical and numerical approach to a bilateral contact problem with nonmonotone friction. Int. J. Appl. Math. Comput. Sci. 23, 263–276 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  9. Barboteu, M., Bartosz, K., Kalita, P.: A dynamic viscoelastic contact problem with normal compliance, finite penetration and nonmonotone slip rate dependent friction. Nonlinear Anal. Real World Appl. 22, 452–472 (2015)

    Article  MATH  MathSciNet  Google Scholar 

  10. Barboteu, M., Bartosz, K., Kalita, P., Ramadan, A.: Analysis of a contact problem with normal compliance, finite penetration and nonmonotone slip dependent friction. Commun. Contemp. Math. 16(1), 29 (2014). doi:10.1142/S0219199713500168

    Article  MathSciNet  Google Scholar 

  11. Barboteu, M., Cheng, X., Sofonea, M.: Analysis of a contact problem with unilateral constraint and slip-dependent friction. Math. Mech. Solids. (2014) doi:10.1177/1081286514537289

    Google Scholar 

  12. Ciarlet, P.G.: Mathematical Elasticity: Three-Dimensional Elasticity. In: Studies in Mathematics and its Applications, vol. 1. North-Holland, Amsterdam (1988)

    Google Scholar 

  13. Ciarlet, P.G., Geymonat, G.: Sur les lois de comportement en élasticité non-linéaire compressible. C. R. Acad. Sci. 295(I), 423–426 (1982)

    MATH  MathSciNet  Google Scholar 

  14. Curnier, A., He, Q.-C., Klarbring, A.: Continuum mechanics modelling of large deformation contact with friction. In: Raus, M., et al. (eds.) Contact Mechanics, pp. 145–158. Plenum Press, New York (1995)

    Chapter  Google Scholar 

  15. Gonzalez, O.: Exact energy and momentum conserving algorithms for general models in non linear elasticity. Comput. Methods Appl. Mech. Eng. 190, 1763–1783 (2000)

    Article  MATH  Google Scholar 

  16. Han, W., Sofonea, M.: Quasistatic Contact Problems in Viscoelasticity and Viscoplasticity. Studies in Advanced Mathematics, vol. 30. American Mathematical Society/International Press, Providence, RI/Somerville, MA (2002)

    Google Scholar 

  17. Hauret, P.: Numerical methods for the dynamic analysis of two-scale incompressible nonlinear structures. Ph.D. thesis, Ecole Polytechnique, France (2004)

    Google Scholar 

  18. Hauret, P.: Mixed interpretation and extensions of the equivalent mass matrix approach for elastodynamics with contact. Comput. Methods Appl. Mech. Eng. 199(45–48), 2941–2957 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  19. Hauret, P., Le Tallec, P.: Energy-controlling time integration methods for nonlinear elastodynamics and low-velocity impact. Comput. Methods Appl. Mech. Eng. 195, 4890–4916 (2006)

    Article  MATH  Google Scholar 

  20. Hauret, P., Salomon, J., Weiss, A., Wohlmuth, B.: Energy consistent co-rotational schemes for frictional contact problems. SIAM J. Sci. Comput. 30, 2488–2511 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  21. Hilber, H., Hughes, T., Taylor, R.: Improved numerical dissipation for time integration algorithms in structural dynamics. Earthq. Eng. Struct. Dyn. 5, 283–292 (1977)

    Article  Google Scholar 

  22. Hwang, I.-H., Lee, Y.-G., Lee, J.-H.: A micromachined friction meter for silicon sidewalls with consideration of contact surface shape. J. Micromech. Microeng. 16, 2475–2481 (2006)

    Article  Google Scholar 

  23. Jarušek, J., Sofonea, M.: On the solvability of dynamic elastic-visco-plastic contact problems. Z. Angew. Mat. Mech. 88, 3–22 (2008)

    Article  MATH  Google Scholar 

  24. Khenous, H.B., Laborde, P., Renard, Y.: On the discretization of contact problems in elastodynamics. Analysis and simulation of Contact Problems, In: Lecture Notes in Applied Computational Mechanics, vol. 27, pp. 31–38. Springer, Berlin/Heidelberg (2006)

    Google Scholar 

  25. Khenous, H.B., Pommier, J., Renard, Y.: Hybrid discretization of the Signorini problem with Coulomb friction. Theoretical aspects and comparison of some numerical solvers. Appl. Numer. Math. 56, 163–192 (2006)

    MATH  MathSciNet  Google Scholar 

  26. Khenous, H.B., Laborde, P., Renard, Y.: Mass redistribution method for finite element contact problems in elastodynamics. Eur. J. Mech. A Solids 27, 918–932 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  27. Kikuchi, N., Oden, J.T.: Contact Problems in Elasticity: A Study of Variational Inequalities and Finite Element Methods. SIAM, Philadelphia (1988)

    Book  MATH  Google Scholar 

  28. Laursen, T.: Computational Contact and Impact Mechanics. Springer, Berlin (2002)

    MATH  Google Scholar 

  29. Laursen, T., Chawla, V.: Design of energy-conserving algorithms for frictionless dynamic contact problems. Int. J. Numer. Methods Eng. 40, 863–886 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  30. Laursen, T., Love, G.: Improved implicit integrators for transient impact problems: dynamic frictional dissipation within an admissible conserving framework. Comput. Methods Appl. Mech. Eng. 192, 2223–2248 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  31. Lemu, H., Trzepiecinski, T.: Numerical and experimental study of frictional behavior in bending under tension test. J. Mech. Eng. 59, 41–49 (2013)

    Article  Google Scholar 

  32. Len, B., Ara, P., Yun, Z.: Physics of the coefficient of friction in CMP. Trans. Electr. Electron. Mater. 8, 79–83 (2007)

    Article  Google Scholar 

  33. Martins, J.A.C., Oden, J.T.: Existence and uniqueness results for dynamic contact problems with nonlinear normal and friction interface laws. Nonlinear Anal. TMA 11, 407–428 (1987)

    Article  MathSciNet  Google Scholar 

  34. Migórski, S., Ochal, A., Sofonea, M.: Nonlinear Inclusions and Hemivariational Inequalities. Models and Analysis of Contact Problems. Advances in Mechanics and Mathematics, vol. 26. Springer, New York (2013)

    Google Scholar 

  35. Moreau, J.-J.: On unilateral constraints, friction and plasticity. In: Capriz, G., Stampacchia, G. (eds.) New Variational Techniques in Mathematical Physics. CIME II, pp. 175–322. Springer, Berlin/Heidelberg (1973)

    Google Scholar 

  36. Oden, J.T., Martins, J.A.C.: Models and computational methods for dynamic friction phenomena. Comput. Methods Appl. Mech. Eng. 52, 527–634 (1985)

    Article  MATH  MathSciNet  Google Scholar 

  37. Shillor, M., Sofonea, M., Telega, J.: Models and Variational Analysis of Quasistatic Contact. Lecture Notes in Physics, vol. 655. Springer, Berlin/Heidelberg (2004)

    Google Scholar 

  38. Signorini, A.: Sopra alcune questioni di elastostatica. Atti della Società Italiana per il Progresso delle Scienze (1933)

    Google Scholar 

  39. Simo, J., Tarnow, N.: The discrete energy-momentum method. part I: conserving algorithms for nonlinear elastodynamics. Z. Angew. Mat. Phys. 43, 757–793 (1992)

    MATH  MathSciNet  Google Scholar 

  40. Sofonea, M., Matei, A.: Mathematical Models in Contact Mechanics.London Mathematical Society Lecture Note Series, vol. 398. Cambridge University Press, Cambridge (2012)

    Google Scholar 

  41. Wriggers, P.: Computational Contact Mechanics. Wiley, Chichester (2002)

    Google Scholar 

Download references

Acknowledgements

This research was supported by the Marie Curie International Research Staff Exchange Scheme Fellowship within the 7th European Community Framework Programme under Grant Agreement No. 295118 and the project Polonium “Mathematical and Numerical Analysis for Contact Problems with Friction” 2014/15.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mikael Barboteu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Barboteu, M., Danan, D., Sofonea, M. (2015). A Hyperelastic Dynamic Frictional Contact Model with Energy-Consistent Properties. In: Han, W., Migórski, S., Sofonea, M. (eds) Advances in Variational and Hemivariational Inequalities. Advances in Mechanics and Mathematics, vol 33. Springer, Cham. https://doi.org/10.1007/978-3-319-14490-0_10

Download citation

Publish with us

Policies and ethics