Skip to main content

Gait During Real-World Challenges: Gait Initiation, Gait Termination, Acceleration, Deceleration, Turning, Slopes, and Stairs

  • Reference work entry
  • First Online:
Handbook of Human Motion
  • 696 Accesses

Abstract

The gait of daily living involves more than walking straight ahead at constant speed. To be functional in the real world, individuals must competently maneuver over slopes and stairs, and around corners to reach their desired destinations. These forms of walking are more challenging than walking straight ahead, and often gait pathologies are more apparent. Specific strategies are often used to walk on slopes, stairs, and around corners that involves changes in speed, foot placement, joint kinetics, and stride length – all of which challenge stability and economy to a much greater degree than walking straight ahead at constant speed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Aldridge Whitehead JM, Wolf EJ, Scoville CR, Wilken JM (2014) Does a microprocessor-controlled prosthetic knee affect stair ascent strategies in persons with transfemoral amputation? Clin Orthop Relat Res 472(10):3093–3101

    Article  Google Scholar 

  • Alimusaj M, Fradet L, Braatz F, Gerner HJ, Wolf SI (2009) Kinematics and kinetics with an adaptive ankle foot system during stair ambulation of transtibial amputees. Gait Posture 30(3):356–363

    Article  Google Scholar 

  • Anderson FC, Pandy MG (2001) Dynamic optimization of human walking. J Biomech Eng 123(5):381–390

    Article  Google Scholar 

  • Andriacchi TP, Ogle JA, Galante JO (1977) Walking speed as a basis for normal and abnormal gait measurements. J Biomech 10(4):261–268

    Article  Google Scholar 

  • Andriacchi TP, Andersson GB, Fermier RW, Stern D, Galante JO (1980) A study of lower-limb mechanics during stair-climbing. J Bone Joint Surg Am 62(5):749–757

    Article  Google Scholar 

  • Andrysek J, Naumann S, Cleghorn WL (2005) Design and quantitative evaluation of a stance-phase controlled prosthetic knee joint for children. IEEE Trans Neural Syst Rehabil Eng 13(4):437–443

    Article  Google Scholar 

  • Au S, Berniker M, Herr H (2008) Powered ankle-foot prosthesis to assist level-ground and stair-descent gaits. Neural Netw 21(4):654–666

    Article  Google Scholar 

  • Bar-Haim S, Belokopytov M, Harries N, Frank A (2004) A stair-climbing test for ambulatory assessment of children with cerebral palsy. Gait Posture 20(2):183–188

    Article  Google Scholar 

  • Bar-Haim S, Belokopytov M, Harries N, Loeppky JA, Kaplanski J (2008) Prediction of mechanical efficiency from heart rate during stair-climbing in children with cerebral palsy. Gait Posture 27(3):512–517

    Article  Google Scholar 

  • Bar-Haim S, Harries N, Al-Oraibi S, Lahat E, Waddah M, Loeppky JA, Belokopytov M (2009) Repeatability of net mechanical efficiency during stair climbing in children with cerebral palsy. Pediatr Phys Ther 21(4):320–324

    Article  Google Scholar 

  • Bellmann M, Schmalz T, Ludwigs E, Blumentritt S (2012) Stair ascent with an innovative microprocessor-controlled exoprosthetic knee joint. Biomed Tech (Berl) 57(6):435–444

    Article  Google Scholar 

  • Bjerke J, Ohberg F, Nilsson KG, Foss OA, Stensdotter AK (2014) Peak knee flexion angles during stair descent in TKA patients. J Arthroplast 29(4):707–711

    Article  Google Scholar 

  • Bohannon RW, Walsh S (1991) Association of paretic lower extremity muscle strength and standing balance with stair-climbing ability in patients with stroke. J Stroke Cerebrovasc Dis 1(3):129–133

    Article  Google Scholar 

  • Bosse I, Oberlander KD, Savelberg HH, Meijer K, Bruggemann GP, Karamanidis K (2012) Dynamic stability control in younger and older adults during stair descent. Hum Mov Sci 31(6):1560–1570

    Article  Google Scholar 

  • Breniere Y, Do MC (1986) When and how does steady state gait movement induced from upright posture begin? J Biomech 19(12):1035–1040

    Article  Google Scholar 

  • Breniere Y, Do MC (1991) Control of gait initiation. J Mot Behav 23(4):235–240

    Article  Google Scholar 

  • Brunt D, Lafferty MJ, McKeon A, Goode B, Mulhausen C, Polk P (1991) Invariant characteristics of gait initiation. Am J Phys Med Rehabil 70(4):206–212

    Article  Google Scholar 

  • Buczek FL, Cooney KM, Walker MR, Rainbow MJ, Concha MC, Sanders JO (2006) Performance of an inverted pendulum model directly applied to normal human gait. Clin Biomech (Bristol, Avon) 21(3):288–296

    Article  Google Scholar 

  • Burnfield JM, Eberly VJ, Gronely JK, Perry J, Yule WJ, Mulroy SJ (2012) Impact of stance phase microprocessor-controlled knee prosthesis on ramp negotiation and community walking function in K2 level transfemoral amputees. Prosthetics Orthot Int 36(1):95–104

    Article  Google Scholar 

  • Carpenter MG, Bellos A, Patla AE (1998) Is backward stepping over obstacles achieved through a simple temporal reversal of forward stepping? Int J Neurosci 93(3–4):189–196

    Article  Google Scholar 

  • Chen CL, Teng YL, Lou SZ, Chang HY, Chen FF, Yeung KT (2014) Effects of an anterior ankle-foot orthosis on walking mobility in stroke patients: get up and go and stair walking. Arch Phys Med Rehabil 95(11):2167–2171

    Article  Google Scholar 

  • Collins S, Ruina A, Tedrake R, Wisse M (2005) Efficient bipedal robots based on passive-dynamic walkers. Science 307(5712):1082–1085

    Article  Google Scholar 

  • Courtine G, Schieppati M (2003a) Human walking along a curved path. I. Body trajectory, segment orientation and the effect of vision. Eur J Neurosci 18(1):177–190

    Article  Google Scholar 

  • Courtine G, Schieppati M (2003b) Human walking along a curved path. II. Gait features and EMG patterns. Eur J Neurosci 18(1):191–205

    Article  Google Scholar 

  • Cumming RG, Klineberg RJ (1994) Fall frequency and characteristics and the risk of hip fractures. J Am Geriatr Soc 42(7):774–778

    Article  Google Scholar 

  • Damavandi M, Dixon PC, Pearsall DJ (2010) Kinematic adaptations of the hindfoot, forefoot, and hallux during cross-slope walking. Gait Posture 32(3):411–415

    Article  Google Scholar 

  • Damavandi M, Dixon PC, Pearsall DJ (2012) Ground reaction force adaptations during cross-slope walking and running. Hum Mov Sci 31(1):182–189

    Article  Google Scholar 

  • Darter BJ, Wilken JM (2014) Energetic consequences of using a prosthesis with adaptive ankle motion during slope walking in persons with a transtibial amputation. Prosthetics Orthot Int 38(1):5–11

    Article  Google Scholar 

  • Davis RI, Ounpuu S, Tyburski D, Gage J (1991) A gait data collection and reduction technique. Hum Mov Sci 10(5):575–587

    Article  Google Scholar 

  • De Quervain IA, Simon SR, Leurgans S, Pease WS, McAllister D (1996) Gait pattern in the early recovery period after stroke. J Bone Joint Surg Am 78(10):1506–1514

    Article  Google Scholar 

  • Deathe AB, Miller WC (2005) The L test of functional mobility: measurement properties of a modified version of the timed “up & go” test designed for people with lower-limb amputations. Phys Ther 85(7):626–635

    Google Scholar 

  • Dimitriou D, Tsai TY, Li JS, Nam KW, Park KK, Kwon YM (2015) In vivo kinematic evaluation of total hip arthroplasty during stair climbing. J Orthop Res 33(7):1087–1093

    Article  Google Scholar 

  • Dixon PC, Pearsall DJ (2010) Gait dynamics on a cross-slope walking surface. J Appl Biomech 26(1):17–25

    Article  Google Scholar 

  • Dou P, Jia X, Suo S, Wang R, Zhang M (2006) Pressure distribution at the stump/socket interface in transtibial amputees during walking on stairs, slope and non-flat road. Clin Biomech (Bristol, Avon) 21(10):1067–1073

    Article  Google Scholar 

  • Ehara Y, Beppu M, Nomura S, Kunimi Y, Takahashi S (1993) Energy storing property of so-called energy-storing prosthetic feet. Arch Phys Med Rehabil 74(1):68–72

    Google Scholar 

  • Elble RJ, Moody C, Leffler K, Sinha R (1994) The initiation of normal walking. Mov Disord 9(2):139–146

    Article  Google Scholar 

  • Eshraghi A, Abu Osman NA, Gholizadeh H, Ali S, Abas WA (2015) Interface stress in socket/residual limb with transtibial prosthetic suspension systems during locomotion on slopes and stairs. Am J Phys Med Rehabil 94(1):1–10

    Article  Google Scholar 

  • Fisher LD, Lord M (1986) Bouncy knee in a semi-automatic knee lock prosthesis. Prosthetics Orthot Int 10(1):35–39

    Google Scholar 

  • Fok LA, Schache AG, Crossley KM, Lin YC, Pandy MG (2013) Patellofemoral joint loading during stair ambulation in people with patellofemoral osteoarthritis. Arthritis Rheum 65(8):2059–2069

    Article  Google Scholar 

  • Franz JR, Kram R (2013a) Advanced age affects the individual leg mechanics of level, uphill, and downhill walking. J Biomech 46(3):535–540

    Article  Google Scholar 

  • Franz JR, Kram R (2013b) How does age affect leg muscle activity/coactivity during uphill and downhill walking? Gait Posture 37(3):378–384

    Article  Google Scholar 

  • Franz JR, Kram R (2014) Advanced age and the mechanics of uphill walking: a joint-level, inverse dynamic analysis. Gait Posture 39(1):135–140

    Article  Google Scholar 

  • Franz JR, Lyddon NE, Kram R (2012) Mechanical work performed by the individual legs during uphill and downhill walking. J Biomech 45(2):257–262

    Article  Google Scholar 

  • Fu YC, Simpson KJ, Brown C, Kinsey TL, Mahoney OM (2014) Knee moments after unicompartmental knee arthroplasty during stair ascent. Clin Orthop Relat Res 472(1):78–85

    Article  Google Scholar 

  • Full RJ, Koditschek DE (1999) Templates and anchors: neuromechanical hypotheses of legged locomotion on land. J Exp Biol 202(Pt 23):3325–3332

    Google Scholar 

  • Garcia M, Chatterjee A, Ruina A, Coleman M (1998) The simplest walking model: stability, complexity, and scaling. J Biomech Eng 120(2):281–288

    Article  Google Scholar 

  • Gill TM, Allore HG, Hardy SE, Guo Z (2006) The dynamic nature of mobility disability in older persons. J Am Geriatr Soc 54(2):248–254

    Article  Google Scholar 

  • Glaister BC, Bernatz GC, Klute GK, Orendurff MS (2007a) Video task analysis of turning during activities of daily living. Gait Posture 25(2):289–294

    Article  Google Scholar 

  • Glaister BC, Orendurff MS, Schoen JA, Klute GK (2007b) Rotating horizontal ground reaction forces to the body path of progression. J Biomech 40(15):3527–3532

    Article  Google Scholar 

  • Glaister BC, Schoen JA, Orendurff MS, Klute GK (2007c) Mechanical behavior of the human ankle in the transverse plane while turning. IEEE Trans Neural Syst Rehabil Eng 15(4):552–559

    Article  Google Scholar 

  • Glaister BC, Orendurff MS, Schoen JA, Bernatz GC, Klute GK (2008) Ground reaction forces and impulses during a transient turning maneuver. J Biomech 41(14):3090–3093

    Article  Google Scholar 

  • Glaister BC, Schoen JA, Orendurff MS, Klute GK (2009) A mechanical model of the human ankle in the transverse plane during straight walking: implications for prosthetic design. J Biomech Eng 131(3):034501

    Google Scholar 

  • Guo M, Axe MJ, Manal K (2007) The influence of foot progression angle on the knee adduction moment during walking and stair climbing in pain free individuals with knee osteoarthritis. Gait Posture 26(3):436–441

    Article  Google Scholar 

  • Hajizadeh M, Hashemi Oskouei A, Ghalichi F, Sole G (2016) Knee kinematics and joint moments during stair negotiation in participants with anterior cruciate ligament deficiency and reconstruction: a systematic review and meta-analysis. PM R 8(6):563–579. e561

    Article  Google Scholar 

  • Hall M, Wrigley TV, Kean CO, Metcalf BR, Bennell KL (2016) Hip biomechanics during stair ascent and descent in people with and without hip osteoarthritis. J Orthop Res. Aug 30. https://doi.org/10.1002/jor.23407. [Epub ahead of print]

  • Hamel KA, Cavanagh PR (2004) Stair performance in people aged 75 and older. J Am Geriatr Soc 52(4):563–567

    Article  Google Scholar 

  • Hamel KA, Okita N, Higginson JS, Cavanagh PR (2005) Foot clearance during stair descent: effects of age and illumination. Gait Posture 21(2):135–140

    Article  Google Scholar 

  • Harries N, Loeppky JA, Shaheen S, Al-Jarrah M, Molteni F, Hutzler Y, Bar-Haim S, Project M (2015) A stair-climbing test for measuring mechanical efficiency of ambulation in adults with chronic stroke. Disabil Rehabil 37(11):1004–1008

    Article  Google Scholar 

  • Hase K, Stein RB (1999) Turning strategies during human walking. J Neurophysiol 81(6):2914–2922

    Article  Google Scholar 

  • Highsmith MJ, Kahle JT, Miro RM, Mengelkoch LJ (2013) Ramp descent performance with the C-Leg and interrater reliability of the Hill Assessment Index. Prosthetics Orthot Int 37(5):362–368

    Article  Google Scholar 

  • Hobara H, Kobayashi Y, Nakamura T, Yamasaki N, Nakazawa K, Akai M, Ogata T (2011) Lower extremity joint kinematics of stair ascent in transfemoral amputees. Prosthetics Orthot Int 35(4):467–472

    Article  Google Scholar 

  • Hockings RL, Schmidt DD, Cheung CW (2013) Single-leg squats identify independent stair negotiation ability in older adults referred for a physiotherapy mobility assessment at a rural hospital. J Am Geriatr Soc 61(7):1146–1151

    Article  Google Scholar 

  • Hreljac A (1993) Preferred and energetically optimal gait transition speeds in human locomotion. Med Sci Sports Exerc 25(10):1158–1162

    Article  Google Scholar 

  • Hreljac A (1995) Determinants of the gait transition speed during human locomotion: kinematic factors. J Biomech 28(6):669–677

    Article  Google Scholar 

  • Hreljac A (2005) Etiology, prevention, and early intervention of overuse injuries in runners: a biomechanical perspective. Phys Med Rehabil Clin N Am 16(3):651–667. vi

    Article  Google Scholar 

  • Hreljac A, Imamura R, Escamilla RF, Edwards WB (2007) Effects of changing protocol, grade, and direction on the preferred gait transition speed during human locomotion. Gait Posture 25(3):419–424

    Article  Google Scholar 

  • Hsue BJ, Su FC (2014) Effects of age and gender on dynamic stability during stair descent. Arch Phys Med Rehabil 95(10):1860–1869

    Article  Google Scholar 

  • Hughes J, Jacobs N (1979) Normal human locomotion. Prosthetics Orthot Int 3(1):4–12

    Google Scholar 

  • Huxham F, Gong J, Baker R, Morris M, Iansek R (2006) Defining spatial parameters for non-linear walking. Gait Posture 23(2):159–163

    Article  Google Scholar 

  • Huxham F, Baker R, Morris ME, Iansek R (2008) Footstep adjustments used to turn during walking in Parkinson’s disease. Mov Disord 23(6):817–823

    Article  Google Scholar 

  • Igawa T, Katsuhira J (2014) Biomechanical analysis of stair descent in patients with knee osteoarthritis. J Phys Ther Sci 26(5):629–631

    Article  Google Scholar 

  • Jacobs JV (2016) A review of stairway falls and stair negotiation: lessons learned and future needs to reduce injury. Gait Posture 49:159–167

    Article  Google Scholar 

  • Jennings CA, Yun L, Loitz CC, Lee EY, Mummery WK et al (2016) Am J Prev Med 52(1):106–114

    Article  Google Scholar 

  • Johnson D (2012) Stair safety: bottom of flight illusion. Work 41(Suppl 1):3358–3362

    Google Scholar 

  • Jones SF, Twigg PC, Scally AJ, Buckley JG (2006) The mechanics of landing when stepping down in unilateral lower-limb amputees. Clin Biomech (Bristol, Avon) 21(2):184–193

    Article  Google Scholar 

  • Kadaba MP, Ramakrishnan HK, Wootten ME, Gainey J, Gorton G, Cochran GV (1989) Repeatability of kinematic, kinetic, and electromyographic data in normal adult gait. J Orthop Res 7(6):849–860

    Article  Google Scholar 

  • Kadaba MP, Ramakrishnan HK, Wootten ME (1990) Measurement of lower extremity kinematics during level walking. J Orthop Res 8(3):383–392

    Article  Google Scholar 

  • Kirtley C, Whittle MW, Jefferson RJ (1985) Influence of walking speed on gait parameters. J Biomed Eng 7(4):282–288

    Article  Google Scholar 

  • Klute GK, Berge JS, Orendurff MS, Williams RM, Czerniecki JM (2006) Prosthetic intervention effects on activity of lower-extremity amputees. Arch Phys Med Rehabil 87(5):717–722

    Article  Google Scholar 

  • Koyama Y, Tateuchi H, Nishimura R, Ji X, Umegaki H, Kobayashi M, Ichihashi N (2015) Relationships between performance and kinematic/kinetic variables of stair descent in patients with medial knee osteoarthritis: an evaluation of dynamic stability using an extrapolated center of mass. Clin Biomech (Bristol, Avon) 30(10):1066–1070

    Article  Google Scholar 

  • Kuo AD (2002) Energetics of actively powered locomotion using the simplest walking model. J Biomech Eng 124(1):113–120

    Article  Google Scholar 

  • Kuo AD (2007) The six determinants of gait and the inverted pendulum analogy: a dynamic walking perspective. Hum Mov Sci 26(4):617–656

    Article  Google Scholar 

  • Lacquaniti F, Ivanenko YP, Zago M (2012) Patterned control of human locomotion. J Physiol 590(10):2189–2199

    Article  Google Scholar 

  • Lai A, Lichtwark GA, Schache AG, Lin YC, Brown NA, Pandy MG (2015) In vivo behavior of the human soleus muscle with increasing walking and running speeds. J Appl Physiol (1985) 118(10):1266–1275

    Article  Google Scholar 

  • Lamontagne M, Varin D, Beaule PE (2011) Does the anterior approach for total hip arthroplasty better restore stair climbing gait mechanics? J Orthop Res 29(9):1412–1417

    Article  Google Scholar 

  • LaPre AK, Sup F (2011) Simulation of a slope adapting ankle prosthesis provided by semi-active damping. Conf Proc IEEE Eng Med Biol Soc 2011:587–590

    Google Scholar 

  • Latham NK, Jette DU, Slavin M, Richards LG, Procino A, Smout RJ, Horn SD (2005) Physical therapy during stroke rehabilitation for people with different walking abilities. Arch Phys Med Rehabil 86(12 Suppl 2):S41–S50

    Article  Google Scholar 

  • Lee J, Seo K (2014) The effects of stair walking training on the balance ability of chronic stroke patients. J Phys Ther Sci 26(4):517–520

    Article  Google Scholar 

  • Lee WC, Frossard LA, Hagberg K, Haggstrom E, Branemark R, Evans JH, Pearcy MJ et al (2007) Clin Biomech (Bristol, Avon) 22(6):665–673

    Article  Google Scholar 

  • Legro MW, Reiber G, del Aguila M, Ajax MJ, Boone DA, Larsen JA, Smith DG, Sangeorzan B (1999) Issues of importance reported by persons with lower limb amputations and prostheses. J Rehabil Res Dev 36(3):155–163

    Google Scholar 

  • Lelas JL, Merriman GJ, Riley PO, Kerrigan DC (2003) Predicting peak kinematic and kinetic parameters from gait speed. Gait Posture 17(2):106–112

    Article  Google Scholar 

  • Lessi GC, da Silva Serrao PR, Gimenez AC, Gramani-Say K, Oliveira AB, Mattiello SM (2012) Male subjects with early-stage knee osteoarthritis do not present biomechanical alterations in the sagittal plane during stair descent. Knee 19(4):387–391

    Article  Google Scholar 

  • Lord SE, McPherson K, McNaughton HK, Rochester L, Weatherall M (2004) Community ambulation after stroke: how important and obtainable is it and what measures appear predictive? Arch Phys Med Rehabil 85(2):234–239

    Article  Google Scholar 

  • Lura DJ, Wernke MM, Carey SL, Kahle JT, Miro RM, Highsmith MJ (2014) Differences in knee flexion between the Genium and C-Leg microprocessor knees while walking on level ground and ramps. Clin Biomech (Bristol, Avon) 30(2):175–181

    Article  Google Scholar 

  • Mann RA, Hagy JL, White V, Liddell D (1979) The initiation of gait. J Bone Joint Surg Am 61(2):232–239

    Article  Google Scholar 

  • Mayagoitia RE, Harding J, Kitchen S (2017) Identification of stair climbing ability levels in community-dwelling older adults based on the geometric mean of stair ascent and descent speed: the GeMSS classifier. Appl Ergon 58:81–88

    Article  Google Scholar 

  • McAlindon TE, Wilson PW, Aliabadi P, Weissman B, Felson DT (1999) Level of physical activity and the risk of radiographic and symptomatic knee osteoarthritis in the elderly: the Framingham study. Am J Med 106(2):151–157

    Article  Google Scholar 

  • McCrory JL, Chambers AJ, Daftary A, Redfern MS (2014) Ground reaction forces during stair locomotion in pregnant fallers and non-fallers. Clin Biomech (Bristol, Avon) 29(2):143–148

    Article  Google Scholar 

  • McFadyen BJ, Winter DA (1988) An integrated biomechanical analysis of normal stair ascent and descent. J Biomech 21(9):733–744

    Article  Google Scholar 

  • Miller CA, Verstraete MC (1999) A mechanical energy analysis of gait initiation. Gait Posture 9(3):158–166

    Article  Google Scholar 

  • Mital A, Fard HF, Khaledi H (1987) A biomechanical evaluation of staircase riser heights and tread depths during stair-climbing. Clin Biomech (Bristol, Avon) 2(3):162–164

    Article  Google Scholar 

  • Morgenroth DC, Segal AD, Zelik KE, Czerniecki JM, Klute GK, Adamczyk PG, Orendurff MS, Hahn ME, Collins SH, Kuo AD (2011) The effect of prosthetic foot push-off on mechanical loading associated with knee osteoarthritis in lower extremity amputees. Gait Posture 34(4):502–507

    Article  Google Scholar 

  • Moseley AM, Descatoire A, Adams RD (2008) Observation of high and low passive ankle flexibility in stair descent. Percept Mot Skills 106(1):328–340

    Article  Google Scholar 

  • Mundermann A, Dyrby CO, D'Lima DD, Colwell CW Jr, Andriacchi TP (2008) In vivo knee loading characteristics during activities of daily living as measured by an instrumented total knee replacement. J Orthop Res 26(9):1167–1172

    Article  Google Scholar 

  • Murray MP, Drought AB, Kory RC (1964) Walking patterns of normal men. J Bone Joint Surg Am 46:335–360

    Article  Google Scholar 

  • Murray MP, Kory RC, Clarkson BH, Sepic SB (1966) Comparison of free and fast speed walking patterns of normal men. Am J Phys Med 45(1):8–23

    Article  Google Scholar 

  • Murray MP, Kory RC, Sepic SB (1970) Walking patterns of normal women. Arch Phys Med Rehabil 51(11):637–650

    Google Scholar 

  • Murray MP, Mollinger LA, Gardner GM, Sepic SB (1984) Kinematic and EMG patterns during slow, free, and fast walking. J Orthop Res 2(3):272–280

    Article  Google Scholar 

  • Murray MP, Spurr GB, Sepic SB, Gardner GM, Mollinger LA (1985) Treadmill vs. floor walking: kinematics, electromyogram, and heart rate. J Appl Physiol 59(1):87–91

    Article  Google Scholar 

  • Nemire K, Johnson DA, Vidal K (2016) The science behind codes and standards for safe walkways: changes in level, stairways, stair handrails and slip resistance. Appl Ergon 52:309–316

    Article  Google Scholar 

  • Neptune RR, Sasaki K (2005) Ankle plantar flexor force production is an important determinant of the preferred walk-to-run transition speed. J Exp Biol 208(Pt 5):799–808

    Article  Google Scholar 

  • Neptune RR, Zajac FE, Kautz SA (2004a) Muscle force redistributes segmental power for body progression during walking. Gait Posture 19(2):194–205

    Article  Google Scholar 

  • Neptune RR, Zajac FE, Kautz SA (2004b) Muscle mechanical work requirements during normal walking: the energetic cost of raising the body’s center-of-mass is significant. J Biomech 37(6):817–825

    Article  Google Scholar 

  • Nilsson J, Thorstensson A (1989) Ground reaction forces at different speeds of human walking and running. Acta Physiol Scand 136(2):217–227

    Article  Google Scholar 

  • Nissan M, Whittle MW (1990) Initiation of gait in normal subjects: a preliminary study. J Biomed Eng 12(2):165–171

    Article  Google Scholar 

  • Novak AC, Brouwer B (2012) Strength and aerobic requirements during stair ambulation in persons with chronic stroke and healthy adults. Arch Phys Med Rehabil 93(4):683–689

    Article  Google Scholar 

  • Novak AC, Brouwer B (2013) Kinematic and kinetic evaluation of the stance phase of stair ambulation in persons with stroke and healthy adults: a pilot study. J Appl Biomech 29(4):443–452

    Article  Google Scholar 

  • Orendurff MS, Segal AD, Klute GK, Berge JS, Rohr ES, Kadel NJ (2004) The effect of walking speed on center of mass displacement. J Rehabil Res Dev 41(6A):829–834

    Article  Google Scholar 

  • Orendurff MS, Schoen J, Glaister BC, Bernatz GC, Huff EA, Segal A, Klute GK (2006a) Joint rotation torques during a common turning task. Gait Posture 24S:201–203

    Article  Google Scholar 

  • Orendurff MS, Schoen JA, Glaister BC, Bernatz GC, Huff EA, Segal A, Klute GK (2006b). Joint rotation torques during a common turning task. Joint ESMAC-GCMAS Meeting, Amsterdam, Gait Posture.

    Google Scholar 

  • Orendurff MS, Segal AD, Berge JS, Flick KC, Spanier D, Klute GK (2006c) The kinematics and kinetics of turning: limb asymmetries associated with walking a circular path. Gait Posture 23(1):106–111

    Article  Google Scholar 

  • Orendurff MS, Bernatz GC, Schoen JA, Klute GK (2008a) Kinetic mechanisms to alter walking speed. Gait Posture 27(4):603–610

    Article  Google Scholar 

  • Orendurff MS, Schoen JA, Bernatz GC, Segal AD, Klute GK (2008b) How humans walk: bout duration, steps per bout, and rest duration. J Rehabil Res Dev 45(7):1077–1089

    Article  Google Scholar 

  • Orendurff MS, Do VK, Newman C, Williams A (2010) How children walk: bout length during real-world locomotor behavior. Int J Exerc Sci 4(1):1–2

    Google Scholar 

  • Peat G, Duncan RC, Wood LR, Thomas E, Muller S (2012) Clinical features of symptomatic patellofemoral joint osteoarthritis. Arthritis Res Ther 14(2):R63

    Article  Google Scholar 

  • Pennock AT, Gantsoudes GD, Forbes JL, Asaro AM, Mubarak SJ (2014) Stair falls: caregiver’s “missed step” as a source of childhood fractures. J Child Orthop 8(1):77–81

    Article  Google Scholar 

  • Peterson CL, Kautz SA, Neptune RR (2011) Braking and propulsive impulses increase with speed during accelerated and decelerated walking. Gait Posture 33(4):562–567

    Article  Google Scholar 

  • Podsiadlo D, Richardson S (1991) The timed “up & go”: a test of basic functional mobility for frail elderly persons. J Am Geriatr Soc 39(2):142–148

    Article  Google Scholar 

  • Prasomsri J, Jalayondeja C, Bovonsunthonchai S, Khemthong S (2014) Walking and stair climbing abilities in individuals after chronic stroke with and without mental health problem. J Med Assoc Thail 97(Suppl 7):S10–S15

    Google Scholar 

  • Prilutsky BI, Gregor RJ (2001) Swing- and support-related muscle actions differentially trigger human walk-run and run-walk transitions. J Exp Biol 204(Pt 13):2277–2287

    Google Scholar 

  • Ramakrishnan HK, Kadaba MP (1991) On the estimation of joint kinematics during gait. J Biomech 24(10):969–977

    Article  Google Scholar 

  • Rasnick R, Standifird T, Reinbolt JA, Cates HE, Zhang S (2016) Knee joint loads and surrounding muscle forces during stair ascent in patients with total knee replacement. PLoS One 11(6):e0156282

    Article  Google Scholar 

  • Reeves ND, Spanjaard M, Mohagheghi AA, Baltzopoulos V, Maganaris CN (2008) The demands of stair descent relative to maximum capacities in elderly and young adults. J Electromyogr Kinesiol 18(2):218–227

    Article  Google Scholar 

  • Riley PO, DellaCroce U, Kerrigan DC (2001) Effect of age on lower extremity joint moment contributions to gait speed. Gait Posture 14(3):264–270

    Article  Google Scholar 

  • Roos MA, Rudolph KS, Reisman DS (2012) The structure of walking activity in people after stroke compared with older adults without disability: a cross-sectional study. Phys Ther 92(9):1141–1147

    Article  Google Scholar 

  • Roys MS (2001) Serious stair injuries can be prevented by improved stair design. Appl Ergon 32(2):135–139

    Article  Google Scholar 

  • Ruina A, Bertram JE, Srinivasan M (2005) A collisional model of the energetic cost of support work qualitatively explains leg sequencing in walking and galloping, pseudo-elastic leg behavior in running and the walk-to-run transition. J Theor Biol 237(2):170–192

    Article  MathSciNet  Google Scholar 

  • Salsich GB, Brechter JH, Powers CM (2001) Lower extremity kinetics during stair ambulation in patients with and without patellofemoral pain. Clin Biomech (Bristol, Avon) 16(10):906–912

    Article  Google Scholar 

  • Sasaki K, Neptune RR (2006a) Differences in muscle function during walking and running at the same speed. J Biomech 39(11):2005–2013

    Article  Google Scholar 

  • Sasaki K, Neptune RR (2006b) Muscle mechanical work and elastic energy utilization during walking and running near the preferred gait transition speed. Gait Posture 23(3):383–390

    Article  Google Scholar 

  • Saunders JB, Inman VT, Eberhart HD (1953) The major determinants in normal and pathological gait. J Bone Joint Surg Am 35-A(3):543–558

    Article  Google Scholar 

  • Sedgeman R, Goldie P, Iansek R 1994. Development of a measure of turning during walking. Proceedings of the Inaugural Conference of the Faculty of Health Sciences, La Trobe University, Melbourne, Australia, pp 26–31

    Google Scholar 

  • Segal A, Rohr E, Orendurff M, Shofer J, O’Brien M, Sangeorzan B (2004) The effect of walking speed on peak plantar pressure. Foot Ankle Int 25(12):926–933

    Article  Google Scholar 

  • Sheehan RC, Gottschall JS (2012) At similar angles, slope walking has a greater fall risk than stair walking. Appl Ergon 43(3):473–478

    Article  Google Scholar 

  • Shelley FJ, Anderson DD, Kolar MJ, Miller MC, Rubash HE (1996) Physical modelling of hip joint forces in stair climbing. Proc Inst Mech Eng H 210(1):65–68

    Article  Google Scholar 

  • Shin SS, Yoo WG (2016) The effects of gait time and trunk acceleration ratio during stair climbing in old-old adult females. J Phys Ther Sci 28(7):2025–2026

    Article  Google Scholar 

  • Shumway-Cook A, Patla A, Stewart AL, Ferrucci L, Ciol MA, Guralnik JM (2005) Assessing environmentally determined mobility disability: self-report versus observed community mobility. J Am Geriatr Soc 53(4):700–704

    Article  Google Scholar 

  • Shumway-Cook A, Guralnik JM, Phillips CL, Coppin AK, Ciol MA, Bandinelli S, Ferrucci L (2007) Age-associated declines in complex walking task performance: the walking InCHIANTI toolkit. J Am Geriatr Soc 55(1):58–65

    Article  Google Scholar 

  • Simoneau GG, Cavanagh PR, Ulbrecht JS, Leibowitz HW, Tyrrell RA (1991) The influence of visual factors on fall-related kinematic variables during stair descent by older women. J Gerontol 46(6):M188–M195

    Article  Google Scholar 

  • Singhal K, Kim J, Casebolt J, Lee S, Han KH, Kwon YH (2015) Gender difference in older adult's utilization of gravitational and ground reaction force in regulation of angular momentum during stair descent. Hum Mov Sci 41:230–239

    Article  Google Scholar 

  • Sinitski EH, Hansen AH, Wilken JM (2012) Biomechanics of the ankle-foot system during stair ambulation: implications for design of advanced ankle-foot prostheses. J Biomech 45(3):588–594

    Article  Google Scholar 

  • Spanjaard M, Reeves ND, van Dieen JH, Baltzopoulos V, Maganaris CN (2008) Influence of step-height and body mass on gastrocnemius muscle fascicle behavior during stair ascent. J Biomech 41(5):937–944

    Article  Google Scholar 

  • Stansfield BW, Nicol AC (2002) Hip joint contact forces in normal subjects and subjects with total hip prostheses: walking and stair and ramp negotiation. Clin Biomech (Bristol, Avon) 17(2):130–139

    Article  Google Scholar 

  • Startzell JK, Owens DA, Mulfinger LM, Cavanagh PR (2000) Stair negotiation in older people: a review. J Am Geriatr Soc 48(5):567–580

    Article  Google Scholar 

  • Stepien JM, Cavenett S, Taylor L, Crotty M (2007) Activity levels among lower-limb amputees: self-report versus step activity monitor. Arch Phys Med Rehabil 88(7):896–900

    Article  Google Scholar 

  • Strike SC, Taylor MJ (2009) The temporal-spatial and ground reaction impulses of turning gait: is turning symmetrical? Gait Posture 29(4):597–602

    Article  Google Scholar 

  • Strutzenberger G, Richter A, Schneider M, Mundermann A, Schwameder H (2011) Effects of obesity on the biomechanics of stair-walking in children. Gait Posture 34(1):119–125

    Article  Google Scholar 

  • Sup F, Varol HA, Goldfarb M (2010) Upslope walking with a powered knee and ankle prosthesis: initial results with an amputee subject. IEEE Trans Neural Syst Rehabil Eng 19(1):71–78

    Article  Google Scholar 

  • Taylor WR, Heller MO, Bergmann G, Duda GN (2004) Tibio-femoral loading during human gait and stair climbing. J Orthop Res 22(3):625–632

    Article  Google Scholar 

  • Taylor MJ, Dabnichki P, Strike SC (2005) A three-dimensional biomechanical comparison between turning strategies during the stance phase of walking. Hum Mov Sci 24(4):558–573

    Article  Google Scholar 

  • Taylor MJ, Strike SC, Dabnichki P (2007) Turning bias and lateral dominance in a sample of able-bodied and amputee participants. Laterality 12(1):50–63

    Article  Google Scholar 

  • Tesio L, Lanzi D, Detrembleur C (1998) The 3-D motion of the centre of gravity of the human body during level walking. I. Normal subjects at low and intermediate walking speeds. Clin Biomech (Bristol, Avon) 13(2):77–82

    Article  Google Scholar 

  • Thigpen MT, Light KE, Creel GL, Flynn SM (2000) Turning difficulty characteristics of adults aged 65 years or older. Phys Ther 80(12):1174–1187

    Google Scholar 

  • Tulchin K, Orendurff M, Karol L (2010) The effects of surface slope on multi-segment foot kinematics in healthy adults. Gait Posture 32(4):446–450

    Article  Google Scholar 

  • Vanicek N, Strike SC, Polman R (2014) Kinematic differences exist between transtibial amputee fallers and non-fallers during downwards step transitioning. Prosthetics Orthot Int 39(4):322–332

    Article  Google Scholar 

  • Varnell MS, Bhowmik-Stoker M, McCamley J, Jacofsky MC, Campbell M, Jacofsky D (2011) Difference in stair negotiation ability based on TKA surgical approach. J Knee Surg 24(2):117–123

    Article  Google Scholar 

  • Vrieling AH, van Keeken HG, Schoppen T, Otten E, Halbertsma JP, Hof AL, Postema K (2008) Uphill and downhill walking in unilateral lower limb amputees. Gait Posture 28(2):235–242

    Article  Google Scholar 

  • Wall JC, Bell C, Campbell S, Davis J (2000) The Timed Get-up-and-Go test revisited: measurement of the component tasks. J Rehabil Res Dev 37(1):109–113

    Google Scholar 

  • Weyand PG, Smith BR, Puyau MR, Butte NF (2010) The mass-specific energy cost of human walking is set by stature. J Exp Biol 213(Pt 23):3972–3979

    Article  Google Scholar 

  • Whitchelo T, McClelland JA, Webster KE (2014) Factors associated with stair climbing ability in patients with knee osteoarthritis and knee arthroplasty: a systematic review. Disabil Rehabil 36(13):1051–1060

    Article  Google Scholar 

  • Winter DA (1983) Biomechanical motor patterns in normal walking. J Mot Behav 15(4):302–330

    Article  Google Scholar 

  • Wolf SI, Alimusaj M, Fradet L, Siegel J, Braatz F (2009) Pressure characteristics at the stump/socket interface in transtibial amputees using an adaptive prosthetic foot. Clin Biomech (Bristol, Avon) 24(10):860–865

    Article  Google Scholar 

  • Wu WL, Huang PJ, Lin CJ, Chen WY, Huang KF, Cheng YM (2005) Lower extremity kinematics and kinetics during level walking and stair climbing in subjects with triple arthrodesis or subtalar fusion. Gait Posture 21(3):263–270

    Article  Google Scholar 

  • Xu D (1994). Ground reaction force analysis of changing direction during walking. Amercian Society of Biomechanics Annual Conference, Columbus, OH

    Google Scholar 

  • Xu D, Carlton LG, Rosengren KS (2004) Anticipatory postural adjustments for altering direction during walking. J Mot Behav 36(3):316–326

    Article  Google Scholar 

  • Xu D, Chow JW, Wang YT (2006) Effects of turn angle and pivot foot on lower extremity kinetics during walk and turn actions. J Appl Biomech 22(1):74–79

    Article  Google Scholar 

  • Yang YR, Yen JG, Wang RY, Yen LL, Lieu FK (2005) Gait outcomes after additional backward walking training in patients with stroke: a randomized controlled trial. Clin Rehabil 19(3):264–273

    Article  Google Scholar 

  • Yu B, Kienbacher T, Growney ES, Johnson ME, An KN (1997a) Reproducibility of the kinematics and kinetics of the lower extremity during normal stair-climbing. J Orthop Res 15(3):348–352

    Article  Google Scholar 

  • Yu B, Stuart MJ, Kienbacher T, Growney ES, An KN (1997b) Valgus-varus motion of the knee in normal level walking and stair climbing. Clin Biomech (Bristol, Avon) 12(5):286–293

    Article  Google Scholar 

  • Zelik KE, Takahashi KZ, Sawicki GS (2015) Six degree-of-freedom analysis of hip, knee, ankle and foot provides updated understanding of biomechanical work during human walking. J Exp Biol 218(Pt 6):876–886

    Article  Google Scholar 

  • Zeni JA Jr, Snyder-Mackler L (2010) Preoperative predictors of persistent impairments during stair ascent and descent after total knee arthroplasty. J Bone Joint Surg Am 92(5):1130–1136

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Orendurff .

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Orendurff, M. (2018). Gait During Real-World Challenges: Gait Initiation, Gait Termination, Acceleration, Deceleration, Turning, Slopes, and Stairs. In: Handbook of Human Motion. Springer, Cham. https://doi.org/10.1007/978-3-319-14418-4_47

Download citation

Publish with us

Policies and ethics