Skip to main content

Biped Controller for Character Animation

  • Reference work entry
  • First Online:
Handbook of Human Motion

Abstract

In this chapter, we first overview the common methods for building biped controllers in physics-based character animation. Then we explain in detail two closely related biped controllers: SIMBICON and GENBICON. The simple biped locomotion control (SIMBICON) strategy adopts a simple linear feedback strategy for foot placement to maintain balance during locomotion. The generalized biped walking control (GENBICON) strategy improves the balance control using an inverted pendulum model for foot placement, in conjunction with Jacobian-transpose control for velocity fine-tuning and gravity compensation for all limb movement. Both SIMBICON and GENBICON use proportional-derivative joint servos to track a desired motion style, which can be interactively edited by users. The major advantages of such biped controllers include simplicity, robustness, and directable styles. Finally, we discuss our ongoing efforts toward building more versatile and robust controllers with minimal prior knowledge.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Al Borno M, de Lasa M, Hertzmann A (2013) Trajectory optimization for full-body movements with complex contacts. IEEE Trans Vis Comput Graph 19(8):1405–1414

    Article  Google Scholar 

  • Coros S, Beaudoin P, van de Panne M (2010) Generalized biped walking control. ACM Trans Graph 29(4):Article 130. https://doi.org/10.1145/1778765.1781156

    Article  Google Scholar 

  • DART. Atlas SIMBICON. https://dartsim.github.io/gallery.html

  • de Lasa M, Mordatch I, Hertzmann A (2010) Feature-based locomotion controllers. ACM Trans Graph 29(4):131:1–131:10. ISSN 0730-0301

    Google Scholar 

  • Geijtenbeek T, Pronost N (2012) Interactive character animation using simulated physics: a state-of-the-art review. Comput Graphics Forum 31:2492–2515. Wiley Online Library

    Article  Google Scholar 

  • Giovanni S, Yin KK (2011) Locotest: deploying and evaluating physics-based locomotion on multiple simulation platforms. Lect Notes Comput Sci 7060:227–241

    Article  Google Scholar 

  • Hämäläinen P, Rajamäki J, Karen Liu C (2015) Online control of simulated humanoids using particle belief propagation. ACM Trans Graph 34(4):81

    Article  MATH  Google Scholar 

  • Hodgins JK, Wooten WL, Brogan DC, O’Brien JF (1995) Animating human athletics. In: Proceedings of the 22nd annual conference on computer graphics and interactive techniques, SIGGRAPH’95. ACM Press, New York, pp 71–78. https://doi.org/10.1145/218380.218414

  • Lee Y, Kim S, Lee J (2010) Data-driven biped control. ACM Trans Graph 29(4):129:1–129:8

    Google Scholar 

  • Liu L, Yin KK, van de Panne M, Shao T, Weiwei X (2010) Sampling-based contact-rich motion control. ACM Trans Graph 29(4):Article 128. https://doi.org/10.1145/1778765.1778865

    Article  Google Scholar 

  • Liu L, Yin KK, van de Panne M, Guo B (2012) Terrain runner: control, parameterization, composition, and planning for highly dynamic motions. ACM Trans Graph 31(6):Article 154. https://doi.org/10.1145/2366145.2366173

    Article  Google Scholar 

  • Liu L, Yin KK, Wang B, Guo B (2013) Simulation and control of skeleton-driven soft body characters. ACM Trans Graph 32(6):Article 215. https://doi.org/10.1145/2508363.2508427

    Google Scholar 

  • Liu L, Yin KK, Guo B (2015) Improving sampling-based motion control. Comput Graphics Forum 34(2):415–423. https://doi.org/10.1111/cgf.12571

    Article  Google Scholar 

  • Liu L, van de Panne M, Yin KK (2016) Guided learning of control graphs for physics-based characters. ACM Trans Graph 35(3):Article 29. https://doi.org/10.1145/2893476

    Google Scholar 

  • Macchietto A, Zordan V, Shelton CR (2009) Momentum control for balance. ACM Trans Graph 28(3):Article 80

    Article  Google Scholar 

  • Muico U, Lee Y, Popović J, Popović Z (2009) Contactaware nonlinear control of dynamic characters. ACM Trans Graph 28(3):Article 81

    Article  Google Scholar 

  • Peng XB, Berseth G, van de Panne M (2016) Terrain-adaptive locomotion skills using deep reinforcement learning. ACM Trans Graph 35(4):Article 81

    Google Scholar 

  • Peng XB, Berseth G, Yin KK, van de Panne M (2017) Deeploco: dynamic locomotion skills using hierarchical deep reinforcement learning. ACM Trans Graph 36(4):Article 41

    Article  Google Scholar 

  • Pratt JE, Tedrake R (2006) Velocity based stability margins for fast bipedal walking. In: Fast motions in biomechanics and robots. Springer, Berlin

    Google Scholar 

  • Pratt J, Chew CM, Torres A, Dilworth P, Pratt G (2001) Virtual model control: an intuitive approach for bipedal locomotion. Int J Robot Res 20(2):129

    Article  Google Scholar 

  • Sunada C, Argaez D, Dubowsky S, Mavroidis C (1994) A coordinated Jacobian transpose control for mobile multi-limbed robotic systems. Proc IEEE Int Conf Robot Autom 1910–1915

    Google Scholar 

  • Witkin A, Kass M (1988) Spacetime constraints. SIGGRAPH’88 22:159–168

    Article  Google Scholar 

  • Yin KK, Loken K, van de Panne M (2007) SIMBICON: simple biped locomotion control. ACM Trans Graph 26(3):Article 105. https://doi.org/10.1145/1276377.1276509

    Article  Google Scholar 

Download references

Acknowledgements

We sincerely thank all our collaborators for their contributions to the work described in this chapter, especially Kevin Loken and Philippe Beaudoin. This work was funded in part by NSERC Discovery Grant RGPIN-2015-04843.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to KangKang Yin .

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Yin, K., Coros, S., van de Panne, M. (2018). Biped Controller for Character Animation. In: Handbook of Human Motion. Springer, Cham. https://doi.org/10.1007/978-3-319-14418-4_12

Download citation

Publish with us

Policies and ethics