Skip to main content

Chemical Absorption

  • Reference work entry
  • First Online:
Handbook of Climate Change Mitigation and Adaptation
  • 5483 Accesses

Abstract

Chemical absorption is one of the most effective methods for CO2 separation. This chapter first explains the principle of chemical absorption. Amine-based systems, carbonate-based systems, aqueous ammonia, membranes, enzyme-based systems, and ionic liquids-based system are discussed as the typical and emerging state of the art for chemical absorption. Furthermore, new solvent selection, novel reactors, and system intergradation have been analyzed. The key issues to hinder the application of chemical absorption are discussed, such as water-consumption-related issues, environmental effects, and economical factors. Finally, some industry applications and future directions are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 1,799.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Agar DW, Tan YH, Hui ZX (2008) Separation CO2 from gas mixtures. Patent WO 2008/015217

    Google Scholar 

  • BP America (2005) CO2 capture project technical report DEFC26-01NT41145, National Energy Technology Laboratory

    Google Scholar 

  • Aroonwilas A, Veawab A (2004) Integration of CO2 capture unit using single- and blended-amines into supercritical coal-fired power plants: implications for emission and energy management. Int J Greenhouse Gas Control 1:143–150

    Article  Google Scholar 

  • Bacon JR, Demas JN (1987) Determination of oxygen concentrations by luminescence quenching of a polymer-immobilized transition-metal complex. Anal Chem 59(23):2780–2785

    Article  Google Scholar 

  • Bedell SA (2009) Oxidative degradation mechanisms for amines in flue gas capture. Energy Procedia 1:771–778

    Article  Google Scholar 

  • Bedell SA, Myers J (1994) Chelating agent formulation for hydrogen sulfide abatement. US Patent 5,338,778, 16 Aug 1994

    Google Scholar 

  • Black S (2006) Chilled ammonia scrubber for CO2 capture. MIT Carbon Sequestration Forum VII, Cambridge, MA

    Google Scholar 

  • Blauwhoff PMM, Versteeg GF, Van Swaaij WPM (1984) A study on the reaction between CO2 and alkanolamines in aqueous solutions. Chem Eng Sci 39:207–225

    Article  Google Scholar 

  • Boa L, Trachtenberg MC (2006) Facilitated transport of CO2 across a liquid membrane: comparing enzyme, amine, and alkaline. J Membr Sci 280:330–334

    Article  Google Scholar 

  • Bozzano G, Dente M, Manenti F, Corna P, Masserdotti F (2014) Fluid distribution in packed beds. Part 1. Literature and technology overview. Ind Eng Chem Res 53:3157–3164

    Article  Google Scholar 

  • Buxton GV (1988) Critical review of rate constants for reactions of hydrated electrons, hydrogen atoms and hydroxyl radicals (OH radical dot/O radical dot-) in aqueous solution. J Phys Chem Ref Data 17:513

    Article  Google Scholar 

  • Cai Z, Xie R, Wu Z (1996) Binary isobaric vapor-liquid equilibria of ethanolamines + water. J Chem Eng Data 41:1101–1103

    Article  Google Scholar 

  • Camacho F, Sánchez S, Pacheco R, Sánchez A, La Rubia MD (2005) Absorption of carbon dioxide at high partial pressures in aqueous solutions of di-isopropanolamine. Ind Eng Chem Res 44:7451–7457

    Article  Google Scholar 

  • Chapel DG, Mariz CL, Ernest J (1999) Recovery of CO2 from flue gases: commercial trends. http://www.netl.doe.gov/publications/proceedings/01/carbon_seq/2b3.pdf

  • Chen J (2002) Super-gravity technology and its application. Chemical Industry Press, Beijing

    Google Scholar 

  • Chen M (2006) Super-gravity absorption reactors for CO2 removal from flue gas. CN 2829861Y

    Google Scholar 

  • Crognale G (1999) Environmental management strategies: the 21st century perspective. Air and Waste Management Association, Sewickley

    Google Scholar 

  • Dame UON. CO2 capture with ionic liquids involving phase change. http://www.arpae-summit.com/em_reporting/exhibitor_detail?exhibitor_id=4238

  • Davis J, Rochelle GT (2009) Thermal degradation of monoethanolamine at stripper conditions. Energy Procedia 1:327–333

    Article  Google Scholar 

  • Derks PWJ, Dijkstra HBS, Hogendoorn JA, Versteeg GF (2005) Solubility of carbon dioxide in aqueous piperazine solutions. AIChE J 51:2311–2327

    Article  Google Scholar 

  • Desideri U, Paolucci A (1999) Performance modelling of a carbon dioxide removal system for power plants. Energ Convers Manag 40:1899–1915

    Google Scholar 

  • DuPart MS, Bacon TR, Edwards DJ (1993) Understanding corrosion in alkanolamine gas treating plants. Part 2. Case histories show actual plant problems and their solutions. Hydrocarb Process 75–80

    Google Scholar 

  • Eide-Haugmo I et al (2009) Environmental impact of amines. Energy Procedia 1:1297–1304

    Article  Google Scholar 

  • Ermatchkov V, Kamps AP-S, Speyer D, Maurer G (2006) Solubility of carbon dioxide in aqueous solutions of piperazine in the low gas loading region. J Chem Eng Data 51:1788–1796

    Article  Google Scholar 

  • Figueroa JD, Fout T, Plasynski S, McIlvried H, Srivastava RD (2008) Advances in CO2 capture technology – the U.S. Department of Energy’s carbon sequestration program. Int J Greenhouse Gas Control 2:9–20

    Article  Google Scholar 

  • Fisher KS, Beitler C, Rueter C, Searcy K, Rochelle GT, Jassim M (2005) Integrating MEA regeneration with CO2 compression and peaking to reduce CO2 capture costs. US: final report of work performed under grant no: DE-FG02-04ER84111, 09 June 2005

    Google Scholar 

  • Freeman SA, Rochelle GT (2011) Thermal degradation of piperazine and its structural analogs. Energy Procedia 4:43–50

    Article  Google Scholar 

  • Freeman SA, Dugas R, Van Wagener DH, Nguyen T, Rochelle GT (2010) Carbon dioxide capture with concentrated, aqueous piperazine. Int J Greenhouse Gas Control 4:119–124

    Article  Google Scholar 

  • Goff GS, Rochelle GT (2006) Oxidation inhibitors for copper and iron catalyzed degradation of monoethanolamine in CO2 capture processes. Ind Eng Chem Res 45:2513

    Article  Google Scholar 

  • Hakka LE, Ouimet MA (2006) US Patent 7,056,482, 6 June 2006

    Google Scholar 

  • Harris F, Kurnia KA, Mutalib MIA, Thanapalan M (2009) Solubilities of carbon dioxide an densities of aqueous sodium glycinate solutions before and after CO2 absorption. J Chem Eng Data 54:144–147

    Article  Google Scholar 

  • Haslegrave JA, Hedges WM, Montgomerie HTR, O’Brien TM (1992) The development of corrosion inhibitors with low-environmental toxicity. In: SPE annual technical conference and exhibition, 4–7 Oct 1992, Washington, DC

    Google Scholar 

  • Horng CT, Li M (2002) Bottom spin valves with continuous spacer exchange bias. US Patent, 6,466,418

    Google Scholar 

  • Hu L (2009) Phase transitional absorption method. US Patent 7,541,011

    Google Scholar 

  • Huang B, Xu S, Gao S, Liu L, Tao J, Niu H et al (2010) Industrial test and techno-economic analysis of CO2 capture in Huaneng Beijing coal-fired power station. Appl Energ 87:3347–3354

    Article  Google Scholar 

  • Jassim MS, Rochelle GT (2006) Innovative absorber/stripper configurations for CO2 capture by aqueous monoethanolamine. Ind Eng Res 45:2465–2472

    Article  Google Scholar 

  • Kamijo TIMM (2006) Apparatus and method for CO2 recovery. Mitsubishi Heavy Industries, Kansai Electric Company

    Google Scholar 

  • Kang MS, Moon SH, Park YI, Lee KH (2002) Development of carbon dioxide separation process using continuous hollow-fiber membrane contactor and water-splitting electrodialysis. Sep Sci Technol 37:1789–1806

    Article  Google Scholar 

  • Koch G (2001) Corrosion cost preventive strategies in the Unites States. CC Technologies & NACE international (Sponsored by Office of Infrastructure and Development Federal Highway Administration)

    Google Scholar 

  • Kohl AL, Nielsen R (1997) Gas purification, 5th edn. Gulf Publishing Company, Houston

    Google Scholar 

  • Korendovych IV, Kryatov SV, Rybak-Akimova EV (2007) Dioxygen activation at non-heme iron: insights from rapid kinetic studies. Acc Chem Res 40:510

    Article  Google Scholar 

  • Kumar PS, Hogendoorn JA, Feron PHM, Versteeg GF (2003) Equilibrium solubility of CO2 in aqueous potassium taurate solutions: part 1. Crystallization in carbon dioxide loaded aqueous salt solutions of amino acids. Ind Eng Chem Res 42:2832–2840

    Article  Google Scholar 

  • Kvamsdal HM, Rochelle GT (2008) Effects of temperature in CO2 absorption from flue gas by aqueous mono-ethanolamine. Ind Eng Chem Res 43(3):867–875

    Article  Google Scholar 

  • Kvamsdal HM et al (2010) Maintaining a neutral water balance in a 450 MWe NGCC-CCS power system with post-combustion carbon dioxide capture aimed at offshore operation. Int J Greenhouse Gas Control 4:613–622

    Article  Google Scholar 

  • Lalevee J, Allonas X, Fouassier J-P (2002) NH and α (CH) bond dissociation enthalpies of aliphatic amines. J Am Chem Soc 124:9613

    Article  Google Scholar 

  • Larsen BL, Rasmussen P, Fredenslund A (1987) A modified UNIFAC group contribution model for prediction of phase equilibria and heats of mixing. Ind Eng Chem Res 26:2274–2286

    Article  Google Scholar 

  • Lenard J, Rousseau R, Teja A (1990) Vapor-liquid equilibria for mixtures of 2-aminoethanol + water. AIChE Symp Ser 86(279):1–5

    Google Scholar 

  • Lente G, Fabian I (1998) The early phase of the iron(III)-sulfite ion reaction. Formation of a novel iron(III)-sulfito complex. Inorg Chem 37:4204

    Article  Google Scholar 

  • Lin C-C, Liu W-T, Tan C-s (1990) Removal of carbon dioxide by absorption in a rotating packed bed. Ind Eng Chem Res 29:917

    Article  Google Scholar 

  • Liu X, Sawyer DT, Bedell SA, Worley CM (1995) Ligand degradation in the iron/dioxygen-induced dehydrogenation of H2S. Paper presented at the seventh sulfur recovery conference, Austin, 24 Sept 1995

    Google Scholar 

  • Ma’mun S, Jakobsen JP, Svendsen HF (2006) Experimental and modeling study of the solubility of carbon dioxide in aqueous 30 mass % 2-((2-aminoethyl)amino)ethanol solution. Ind Eng Chem Res 45:2505–2512

    Article  Google Scholar 

  • Maddox RN (1985) Gas conditioning and processing, vol 4, Gas and liquid sweetening. Campbell Petroleum Series, Norman

    Google Scholar 

  • Mamun S et al (2007) Selection of new absorbents for carbon dioxide capture. Energy Conv Manag 48:251–258

    Article  Google Scholar 

  • Mandal BP, Bandyopadhyay SS (2005) Simulation absorption of carbon dioxide and hydrogen sulfide into aqueous blends of 2-amino-2-methyl-1-propanol and diethanolamine. Chem Eng Sci 60:6438–6451

    Article  Google Scholar 

  • Mandal BP, Bandyopadhyay SS (2006a) Absorption of carbon dioxide into aqueous blends of 2-amino-2-methyl-1-propanol and monoethanolamine. Chem Eng Sci 61:5440–5447

    Article  Google Scholar 

  • Mandal BP, Bandyopadhyay SS (2006b) Simultaneous absorption of CO2 and H2S into aqueous blends of N-methyldiethanolamine and diethanolamine. Environ Sci Technol 40:6076–6084

    Article  Google Scholar 

  • Mandal BP, Guba M, Biswas AK, Bandyopadhyay SS (2001) Removal of carbon dioxide by absorption in mixed amines: modeling of absorption in aqueous MDEA/MEA and AMP/MEA solutions. Chem Eng Sci 56:6217–6224

    Article  Google Scholar 

  • Mandal BP, Kundu M, Padhiyar NU, Bandyopadhyay SS (2004) Physical solubility and diffusivity of N2O and CO2 into aqueous solutions of (2-amino-2-methyl-1-propanol + diethanolamine) and (N-methyldiethanolamine + diethanolamine). J Chem Eng Data 49:264–270

    Article  Google Scholar 

  • Matsumiya N, Teramoto M, Kitada S, Matsuyama H (2005) Evaluation of energy consumption for separation of CO2 in flue gas by hollow fiber facilitated transport membrane module with permeation of amine solution. Sep Purif Technol 46:26–32

    Article  Google Scholar 

  • McLees JA (2006) Vapor-liquid equilibrium of monoethanolamine/piperazine/water at 35–70 °C. MSE thesis, The University of Texas at Austin, Austin

    Google Scholar 

  • McMahon AJ, Harrop D (1995) Green corrosion inhibitors: an oil company perspective. In: CORROSION 95, Houston

    Google Scholar 

  • Meng H et al (2008) Removal of heat stable salts from aqueous solutions of N-methyldiethanolamine using a specially designed three-compartment configuration electrodialyzer. J Membr Sci 322:436–440

    Article  Google Scholar 

  • Mimura T, Suda T, Honda A, Kumazawa H (1998) Kinetics of reaction between carbon dioxide and sterically hindered amines for carbon dioxide recovery from power plant flue gases. Chem Eng Commun 170:245–260

    Article  Google Scholar 

  • MOEA Industrial Development Bureau (2002) The technique manual on the recovery of carbon dioxide by absorption, Taiwan

    Google Scholar 

  • Mogul MG (1999) Reduce corrosion in amine gas absorption columns. Hydrocarb Process 78(10):47–56

    Google Scholar 

  • Nath A, Bender E (1983) Isothermal vapor-liquid equilibria of binary and ternary mixtures containing alcohol, alkanolamine, and water with a new static device. J Chem Eng Data 26:370–375

    Article  Google Scholar 

  • Nguyen T et al (2010) Amine volatility in CO2 capture. Int J Greenhouse Gas Control 4(5):707–715

    Article  Google Scholar 

  • Okabe K, Mano H, Fujioka Y (2008) Separation and recovery of carbon dioxide by a membrane flash process. Int J Greenhouse Gas Control 2:485–491

    Article  Google Scholar 

  • Oyenekan BA, Rochelle GT (2006) Energy performance of stripper configurations for CO2 capture by aqueous amines. Ind Eng Chem Res 45(8):2457–2464

    Article  Google Scholar 

  • Oyenekan BA, Rochelle GT (2007) Alternative stripper configurations for CO2 capture by aqueous amines. AIChE J 53(12):3144–3154

    Article  Google Scholar 

  • Oyenekan BA, Rochelle GT (2009) Rate modeling of CO2 stripping from potassium carbonate promoted by piperazine. Int J Greenhouse Gas Control 3:121–132

    Article  Google Scholar 

  • Pederson O, Dannstrom H, Gronvold M, Stuksrud D, Ronning O (2000) Gas treating using membrane gas/liquid contactors. In: Fifth international conference on greenhouse gas control technologies, Cairns

    Google Scholar 

  • Polderman LD, Dillon CP et al (1955) Why monoethanolamine solution breaks down in gas treating service. In: Proceedings of the gas conditioning conference, pp 49–56

    Google Scholar 

  • Rampin P (2000) Amine units: results of a survey on structural reliability. In: Proceedings of international conference corrosion in refinery, petrochemical and power generation plants, Venezia, pp 18–19

    Google Scholar 

  • Ramshaw C, Mallinson RH (1981) Mass transfer process. US Patent 4,283,255

    Google Scholar 

  • Raynal L, Alix P, Bouillon P, Gomez A, de Nailly MLF, Jacquin M et al (2011) The DMX™ process: an original solution for lowering the cost of post-combustion carbon capture. Energy Procedia 4:779–786

    Article  Google Scholar 

  • Reddy SGJF (2007) Integrated compressor/stripper configurations and methods. Fluor Technologies Corporation

    Google Scholar 

  • Resnik KP, Yeh JT, Pennline HW (2004) Aqua ammonia process for simultaneous removal of CO2, SO2 and NOx. Int J Environ Technol Manage 4(1/2):89–104

    Article  Google Scholar 

  • Resnik KP, Garber W, Hreha DC, Yeh JT, Pennline HW (2006) A parametric scan for regenerative ammonia-based scrubbing for the capture of CO2. In: Proceedings of the 23rd annual international Pittsburgh coal conference, Pittsburgh

    Google Scholar 

  • Rinker EB, Ashour SS, Sandall OC (1995) Kinetics and modelling of carbon dioxide absorption into aqueous solutions of N-methyldiethanolamine. Chem Eng Sci 50:755–768

    Article  Google Scholar 

  • Rochelle G, Chen E, Dugas R, Oyenakan B, Seibert F (2006) Solvent and process enhancements for CO2 absorption/stripping. In: 2005 annual conference on capture and sequestration, Alexandria

    Google Scholar 

  • Rochelle G, Chen E, Freeman S, Van Wagener D, Xu Q, Voice A (2011) Aqueous piperazine as the new standard for CO2 capture technology. Chem Eng J 171:725–733

    Article  Google Scholar 

  • Rojey A, Cadours R, Carrette P-L et al (2007) Process for deacidification of a gas by means of an absorbent solution with fractionated regeneration by heating. Patent WO 2007/104856

    Google Scholar 

  • Rooney PC, DuPart MS, Bacon TR (1998) Oxygen's role in alkanolamine degradation. Hydrocarb Process 77(7):109–113

    Google Scholar 

  • Rubin ES, Rao AB (2002) A technical economic and environmental assessment of amine-based CO2 capture technology for power plant greenhouse gas control. Annual Technical Progress Report

    Google Scholar 

  • Sakwattanapong R et al (2005) Behavior of reboiler heat duty for CO2 capture plants using regenerable single and blended alkanolamines. Ind Eng Chem Res 44:4465–4473

    Article  Google Scholar 

  • Schnell I (2004) Dipolar recoupling in fast-MAS solid-state NMR spectroscopy. Chem Inform 35. doi:10.1002/chin.200451274

    Google Scholar 

  • Schwartz HA (1982) Chain decomposition of aqueous triethanolamine. J Phys Chem 86:3431

    Article  Google Scholar 

  • Semeonova TA, Lieyijiesi ИЛ (1982) Purification of industrial gas. Research Institute of Nanjing Chemical Industrial Corporation Translation. Chemical Industry Press, Beijing

    Google Scholar 

  • Shuster E (2010) Estimating freshwater needs to meet future thermoelectric generation requirements, DOE/ NETL-400/2010/1339, pp 7–14

    Google Scholar 

  • Singh D, Croiset E, Douglas PL, Douglas MA (2002) Economics of CO2 capture from a coal-fired power plant – a sensitivity analysis. In: Proceedings of the sixth conference on greenhouse gas control technologies (GHGT-6), Kyoto

    Google Scholar 

  • Singh P, Niederer JPM, Versteeg GF (2007) Structure and activity relationships for amine based CO2 absorbents – I. Int J Greenhouse Gas Control 1:5–10

    Article  Google Scholar 

  • Soosaiprakasam IR (2008) Corrosion and polarization behavior of carbon steel in MEA2 based CO2 capture process. Int J Greenhouse Gas Control 2(4):553–562

    Article  Google Scholar 

  • Soosaiprakasam IR, Veawab A (2008) Corrosion and polarization behavior of carbon steel in MEA-based CO2 capture process. Int J Green House Gas Control 2:553–562

    Article  Google Scholar 

  • Source: IPCC special report on carbon dioxide capture and storage, 2005

    Google Scholar 

  • Spekuljak Z, Monella H (1994) A new design concept of structured packing column auxiliaries. Chem Eng Technol 17:61–66

    Article  Google Scholar 

  • Stéphenne K (2013) Start-up of world’s first commercial post-combustion coal fired CCS project: contribution of Shell Cansolv to SaskPower Boundary Dam ICCS project. Energy Procedia

    Google Scholar 

  • Suzuki M (2007) Ligand effects on dioxygen activation by copper and nickel complexes: reactivity and intermediates. Acc Chem Res 40:609

    Article  Google Scholar 

  • Svendsen HF, Tobiesen FA, Mejdell T et al (2007) Method and apparatus for energy reduction in acid gas capture processes. Patent WO 2007/001190

    Google Scholar 

  • Tan MSYH (2010) Study of CO2-absorption into thermomorphic lipophilic amine solvents

    Google Scholar 

  • Tan LS, Shariff AM, Lau KK, Bustam MA (2012) Factors affecting CO2 absorption efficiency in packed column: a review. J Ind Eng Chem 18:1874–1883

    Article  Google Scholar 

  • Teramoto M, Ohnishi N, Takeuchi N, Kitada S, Matsuyama H, Matsumiya N, Mano H (2003) Separation and enrichment of carbon dioxide by capillary membrane module with permeation of carrier solution. Sep Purif Technol 30:215–217

    Article  Google Scholar 

  • Teramoto M, Kitada S, Ohnishi N, Matsuyama H, Matsumiya N (2004) Separation and concentration of CO2 by capillary-type facilitated transport membrane module with permeation of carrier solution. J Membr Sci 234:83–94

    Article  Google Scholar 

  • Thitakamol B, Veawab A, Aroonwilas A (2007) Environmental impacts of absorption-based CO2 capture unit for post-combustion treatment of flue gas from coal-fired power plant. Int J Greenhouse Gas Control 1(3):318–342

    Article  Google Scholar 

  • Touhara H, Okazaki S, Okino F, Tanaka H, Ikari K, Nakanishi K (1982) Thermodynamic properties of aqueous mixtures of hydrophilic compounds 2-aminoethanol and its methyl derivatives. J Chem Thermodyn 14:145–156

    Article  Google Scholar 

  • Trachtenberg MC, Tu CK, Landers RA, Wilson RC, McGregor ML, Laipis PJ, Paterson M, Silverman DN, Thomas D, Smith RL, Rudolph FB (1999) Carbon dioxide transport by proteic and facilitated transport membranes. Life Support Biosph Sci 6:293–302

    Google Scholar 

  • Vaidya PD, Kenig EY (2007) Absorption of CO2 into aqueous blends of alkanolamines prepared from renewable resources. Chem Eng Sci 62:7344–7350

    Article  Google Scholar 

  • Van Eldik R, Coichev N, Bal Reddy K, Gerhard A (1992) Metal ion catalyzed autoxidation of sulfur (IV) oxides: redox cycling of metal ions induced by sulfite. Ber Bunsenges Phys Chem 96:478

    Article  Google Scholar 

  • Veawab A, Aroonwilas A (2002) Identification of oxidizing agents in aqueous amine-CO2 systems using a mechanistic corrosion model. Corros Sci 44:967–987

    Article  Google Scholar 

  • Weiyang F (2005) Liquid effective velocity in a column containing corrugated metal sheet packing. Chem Ind Eng Process 24:1–4

    Google Scholar 

  • White CM, Strazisar BR, Granite EJ (2003) Separation and capture of CO2 from large stationary sources and sequestration in geological formations: coalbeds and deep saline aquifers. J Air Waste Manag Assoc 53(6):645–715

    Article  Google Scholar 

  • Woodhouse SRP (2008) Improved absorbent regeneration. Aker Clean Carbon

    Google Scholar 

  • Yan S, Fang M et al (2007) Experimental study on the separation of CO2 from flue gas using hollow fiber membrane contactors without wetting. Fuel Process Technol 88(5):501–511

    Article  Google Scholar 

  • Yan S, Fang M et al (2008) Comparative analysis of CO2 separation from flue gas by membrane gas absorption technology and chemical absorption technology in China. Energy Convers Manage 49:3188–3197

    Article  Google Scholar 

  • Yan S, Fang M et al (2009) Regeneration of CO2 from CO2-rich alkanolamines solution by using reduced thickness and vacuum technology: regeneration feasibility and characteristic of thin-layer solvent. Chem Eng Process 48:515–523

    Article  Google Scholar 

  • Yang WC, Ciferno J (2006) Assessment of carbozyme enzyme-based membrane technology for CO2 capture from flue gas. DOE/NETL 401/072606

    Google Scholar 

  • Yazvikova NV, Zelenskaya LG et al (1975) Mechanism of side reactions during removal of carbon dioxide from gases by treatment with monoethanolamine. Z Prik Khim 48(3):674–676

    Google Scholar 

  • Yeh JT, Resnik KP, Rygle K, Pennline HW (2005) Semibatch absorption and regeneration studies for CO2 capture by aqueous ammonia. Fuel Process Technol 86(14–15):1533–1546

    Article  Google Scholar 

  • Yeon SH, Lee KS, Sea B, Park YI, Lee KH (2005) Application of pilot-scale membrane contactor hybrid system for removal of carbon dioxide from flue gas. J Membr Sci 257:156–160

    Article  Google Scholar 

  • Zhang Q, Cussler EL (1985a) Microporous hollow fibers for gas-absorption. 1. Mass-transfer in the liquid. J Membr Sci 23:321–332

    Article  Google Scholar 

  • Zhang Q, Cussler EL (1985b) Microporous hollow fibers for gas-absorption. 2. Mass-transfer across the membrane. J Membr Sci 23:333–345

    Article  Google Scholar 

  • Zhang J, Agar DW, Zhang X, Geuzebroek F (2011) CO2 absorption in biphasic solvents with enhanced low temperature solvent regeneration. Energy Procedia 4:67–74

    Article  Google Scholar 

  • Zhang J, Qiao Y, Wang W, Misch R, Hussain K, Agar DW (2013) Development of an energy-efficient CO2 capture process using thermomorphic biphasic solvents. Energy Procedia 37:1254–1261

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mengxiang Fang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this entry

Cite this entry

Fang, M., Zhu, D. (2017). Chemical Absorption. In: Chen, WY., Suzuki, T., Lackner, M. (eds) Handbook of Climate Change Mitigation and Adaptation. Springer, Cham. https://doi.org/10.1007/978-3-319-14409-2_38

Download citation

Publish with us

Policies and ethics