Skip to main content

Liquid Crystal Theory and Modeling

  • Reference work entry
  • First Online:
Handbook of Visual Display Technology
  • 387 Accesses

Abstract

In this chapter, we explain the rationale behind the theoretical modeling of liquid crystals and explain the important steps to construct a realistic and accurate model for a particular physical system. We then summarize two commonly used theories of nematics: one based on using the director as a dependent variable and one based on using the tensor order parameter. Using an example problem, the π-cell, we show the advantages and disadvantages of these two theoretical approaches, demonstrating the importance of carefully considering the choice of model before embarking on simulations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 1,399.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 1,999.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Further Reading

  • Barberi R, Ciuchi F, Lombardo G, Bartolino R, Durand GE (2004a) Time resolved experimental analysis of the electric field induced biaxial order reconstruction in nematics. Phys Rev Lett 93:art.137801

    Google Scholar 

  • Barberi R, Ciuchi F, Durand GE, Iovane M, Sikharulidze D, Sonnet AM, Virga EG (2004b) Electric field induced order reconstruction in a nematic cell. Euro Phys J E 13:61

    Article  Google Scholar 

  • Barbero G, Dozov I, Palierne JF, Durand GE (1986) Order electricity and surface orientation in nematic liquid-crystals. Phys Rev Lett 56:2056

    Article  Google Scholar 

  • Bos PJ, Koehler-Beran KR (1984) The pi-cell – a fast liquid-crystal optical-switching device. Mol Cryst Liq Cryst 113:329

    Article  Google Scholar 

  • Bose E (1908) Zur Theorie der anisotropen Flussigkeiten. Phys Z 9:708

    MATH  Google Scholar 

  • Care CM, Cleaver DJ (2005) Computer simulation of liquid crystals. Rep Prog Phys 68:2665

    Article  Google Scholar 

  • de Gennes PG, Prost J (1993) The physics of liquid crystals, vol 2. OUP Clarendon Press, Oxford

    Google Scholar 

  • Dunmur D, Fukuda A, Luckhurst G (2001) Physical properties of liquid crystals: nematics. Institution of Engineering and Technology, Stevenage

    Google Scholar 

  • Ericksen J (1991) Liquid crystals with variable degree of orientation. Arch Ration Mech Anal 113:97

    Article  MathSciNet  MATH  Google Scholar 

  • Frank FC (1958) On the theory of liquid crystals. Discuss Faraday Soc 25:19

    Article  Google Scholar 

  • Kelker H (1973) History of liquid crystals. Mol Cryst Liq Cryst 21:1

    Article  Google Scholar 

  • Leslie FM (1968) Some constitutive equations for liquid crystals. Arch Ration Mech Anal 28:205

    Article  MathSciNet  MATH  Google Scholar 

  • Meyer R (1969) Piezoelectric effects in liquid crystals. Phys Rev Lett 22:918

    Article  Google Scholar 

  • Miesowicz M (1935) Influence of a magnetic field on the viscosity of para-azoxyanisol. Nature 136:261

    Google Scholar 

  • Miesowicz M (1936) Der einfluss des magnetischen feldes auf die viskositat der flussigkeiten in der nematischen phase. Bull Acad Pol A 28:228

    Google Scholar 

  • Oseen CW (1933) The theory of liquid crystals. Trans Faraday Soc 29:883

    Article  MATH  Google Scholar 

  • Parodi O (1970) Stress tensor for a nematic liquid crystal. J Phys (Paris) 31:581

    Article  Google Scholar 

  • Ramage A, Newton CJP (2008) Adaptive grid methods for Q-tensor theory of liquid crystals: a one-dimensional feasibility study. Mol Cryst Liq Cryst 480:160

    Article  Google Scholar 

  • Rapini A, Papoular M (1969) Distortion d’une lamelle nématique sous champ magnétique conditions d’ancrage aux parois. J Phys (Paris) Colloq 30:C4

    Article  Google Scholar 

  • Schophol N, Sluckin TJ (1987) Defect core structure in nematic liquid-crystals. Phys Rev Lett 59:2582

    Article  Google Scholar 

  • Sluckin TJ, Dunmur DA, Stegemeyer H (2004) Crystals that flow: classic papers from the history of liquid crystals. Taylor & Francis, London

    Google Scholar 

  • Sonnet AM, Maffettone PL, Virga EG (2004) Continuum theory for nematic liquid crystals with tensorial order. J Non-Newtonian Fluid Mech 119:51

    Article  MATH  Google Scholar 

  • Stewart IW (2004) The static and dynamic continuum theory of liquid crystals: a mathematical introduction. Taylor & Francis, London

    Google Scholar 

  • Virga EG (1994) Variational theories for liquid crystals. Chapman & Hall, London

    Book  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. J. Mottram .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this entry

Cite this entry

Mottram, N.J., Newton, C.J.P. (2016). Liquid Crystal Theory and Modeling. In: Chen, J., Cranton, W., Fihn, M. (eds) Handbook of Visual Display Technology. Springer, Cham. https://doi.org/10.1007/978-3-319-14346-0_87

Download citation

Publish with us

Policies and ethics