Skip to main content

Human Interface Factors Associated with HWDs

  • Reference work entry
  • First Online:
Handbook of Visual Display Technology
  • 307 Accesses

Abstract

This chapter provides a review of selected visual perception issues that impact the design and use of head-worn displays (HWDs). Issues discussed include interocular tolerance limits, binocular rivalry, accommodation-vergence mismatch, field of view, partial-overlap HWDs, perceptual constancy, head movements, and head tracking.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 1,399.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 1,999.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

HWD:

Head-worn display

LE:

Left eye

RE:

Right eye

VOR:

Vestibulo-ocular reflex

Further Reading

  • Benson A, Barnes K (1978) Vision during angular oscillation: the dynamic interaction of visual and vestibular mechanisms. Aviat Space Environ Med 49:340–345

    Google Scholar 

  • Blake R (1989) A neural theory of binocular rivalry. Psychol Rev 96:145–167

    Article  Google Scholar 

  • Blake R, Boothroyd K (1985) The precedence of binocular fusion over binocular rivalry. Percept Psychophys 37:114–124

    Article  Google Scholar 

  • Boydstun A, Rogers J, Tripp L, Patterson R (2009) Stereo depth perception survives significant interocular luminance differences. J Soc Info Disp 17:467–471

    Article  Google Scholar 

  • Breese B (1899) On inhibition. Psychol Monogr 3:1–65

    Article  Google Scholar 

  • Cakmakci O, Rolland J (2006) Head-worn displays: a review. J Display Tech 2:199–216

    Article  Google Scholar 

  • Davis E (1997) Visual requirements in HWDs: what can we see and what do we need to see? In: Melzer J, Moffitt K (eds) Head mounted displays: designing for the user. McGraw-Hill, New York

    Google Scholar 

  • Edgar G, Pope J, Craig I (1993) Visual accommodation problems with head-up and helmet mounted displays. In: Bartlett C, Cowan M (eds) Proceedings of SPIE: display systems: high-resolution and large screen displays and helmet, head-up, and head-down display. SPIE, Bellingham

    Google Scholar 

  • Ellis SR, Bucher UJ (1994) Distance perception of stereoscopically presented virtual objects optically superimposed on physical objects by a head mounted see-through display. In: Proceedings of the 38th annual meeting of the human factors and ergonomics society, Nashville

    Google Scholar 

  • Ellis S, Bucher U, Menges B (1995) The relationship of binocular convergence and errors in judged distance to virtual objects. In: Proceedings of the international federation of automatic control. National Aeronautics and Space Administration, Boston

    Google Scholar 

  • Fisher R (1994) Optics for head-mounted displays. Info Disp 10:12–16

    Google Scholar 

  • Foley J, Ribeiro-Filho N, Da Silva J (2004) Visual perception of extent and the geometry of visual space. Vis Res 44:147–156

    Article  Google Scholar 

  • Geri G, Pierce B, Patterson R (2008) Oculomotor contribution to the change in perceived speed with viewing distance. J Opt Soc Am A 25:2851–2857

    Article  Google Scholar 

  • Grunwald A, Kohn S (1994) Visual field information in low altitude visual flight and line-of-sight slaved helmet-mounted displays. IEEE Trans Syst Man Cybern 24:120–134

    Article  Google Scholar 

  • Hess R, Liu C, Wang Y-Z (2003) Differential binocular input and local stereopsis. Vis Res 43:2303–2313

    Article  Google Scholar 

  • Keller K, Colucci D (1998) Perception in HWDs: what is it in head mounted displays (HWDs) that really make them all so terrible? In: Lewandowski R, Haworth L, Girolamo H (eds) Proceedings of SPIE: helmet- and head-mounted displays III. SPIE, Bellingham

    Google Scholar 

  • Klymenko V, Harding T, Beasley H, Martin J (1999) The effect of helmet mounted display field of view configurations on target acquisition (Technical report no. 99-19). U.S. Army Aeromedical Research Laboratory, Fort Rucker

    Google Scholar 

  • Kooi F, Toet A (2004) Visual comfort of binocular and 3D displays. Displays 25:99–108

    Article  Google Scholar 

  • Kruk R, Longridge T (1984) Binocular overlap in a fiber optic helmet mounted display. In: Proceedings of the 1984 image conference III. The IMAGE Society, Bethesda

    Google Scholar 

  • Laramee R, Ware C (2002) Rivalry and interference with a head mounted display. ACM Trans Comput Hum Interact 9:238–251

    Article  Google Scholar 

  • Levelt W (1965) On binocular rivalry. Institute for Perception RVO-TNO, Soesterberg

    Google Scholar 

  • Luo X, Kenyon R, Kamper D, Sandin D, De-Fanti T (2007) The effects of scene complexity, stereovision, and motion parallax on size constancy in a virtual environment. In: Kenyon R (ed) Virtual reality conference, 2007. IEEE, Piscataway, pp 59–66

    Chapter  Google Scholar 

  • Melzer J, Moffitt K (1997) HWD design – putting the user first. In: Melzer J, Moffitt K (eds) Head mounted displays: designing for the user. McGraw-Hill, New York

    Google Scholar 

  • Meng X, Chen Y, Qian N (2004) Both monocular and binocular signals contribute to motion rivalry. Vis Res 44:45–55

    Article  Google Scholar 

  • Nakayama K, Shimojo S (1990) Da Vinci stereopsis: depth and subjective occluding contours from unpaired image points. Vis Res 30:1811–1825

    Article  Google Scholar 

  • Norman H, Norman J, Bilotta J (2000) The temporal course of suppression during binocular rivalry. Perception 29:831–841

    Article  Google Scholar 

  • Ogle K (1938) Induced size effect: I. Anew phenomenon in binocular space-perception associated with the relative sizes of the images of the two eyes. Arch Ophthalmol 20:604–623

    Article  Google Scholar 

  • Owens D, Leibowitz H (1976) Oculomotor adjustments in darkness and the specific distance tendency. Percept Psychophys 20:2–9

    Article  Google Scholar 

  • Owens D, Leibowitz H (1980) Accommodation, convergence, and distance perception in low illumination. Am J Optom Physiol Opt 57:540–550

    Article  Google Scholar 

  • Padmos P, Milders M (1992) Quality criteria for simulator images: a literature review. Hum Factors 34:727–748

    Google Scholar 

  • Patterson R (2015) Human factors of stereoscopic 3D displays. Springer, London

    Book  Google Scholar 

  • Patterson R, Winterbottom M, Pierce B (2006) Perceptual issues with the use of head-mounted displays. Hum Factors 48:555–573

    Article  Google Scholar 

  • Patterson R, Winterbottom M, Pierce B, Fox R (2007) Binocular rivalry and head-mounted displays. Hum Factors 49:1083–1096

    Article  Google Scholar 

  • Peli E (1990) Visual issues in the use of a head-mounted monocular display. Opt Eng 29:883–892

    Article  Google Scholar 

  • Pierce B, Howard I (1997) Types of size disparity and the perception of surface slant. Perception 23:1503–1517

    Article  Google Scholar 

  • Pierce B, Arrington K, Moreno M (1999) Motion and stereoscopic tilt perception. J Soc Info Disp 3:193–206

    Article  Google Scholar 

  • Rash C, Mozo B, McEntire B, Licina J (1996) RAH- 66 Comanche health hazard and performance issues for the helmet integrated display and sighting system (Technical report no. 97-1). U.S. Army Aeromedical Research Laboratory, Fort Rucker

    Google Scholar 

  • Rolland JP, Fuchs H (2000) Optical versus video see-through head-mounted displays in medical visualization. Presence Teleop Virt Environ 9(3):287–309

    Article  Google Scholar 

  • Rolland JP, Gibson W, Ariely D (1995) Towards quantifying depth and size perception in virtual environments. Presence Teleop Virt Environ 4(1):24–49

    Article  Google Scholar 

  • Schall J, Nawrot M, Blake R, Yu K (1993) Visual guided attention is neutralized when informative cues are visible but unperceived. Vis Res 33:2057–2064

    Article  Google Scholar 

  • So R, Griffin M (1992) Compensation lags in head-coupled displays using head position prediction and image deflection. AIAA J Aircraft 29:1064–1068

    Article  Google Scholar 

  • Toates F (1972) Accommodation function of the human eye. Physiol Rev 52:828–863

    Google Scholar 

  • Toates F (1974) Vergence eye movements. Doc Ophthalmol 37:153–214

    Article  Google Scholar 

  • Tsou B, Shenker M (2000) Visual factors associated with headmounted displays. In: Bass M (ed) Handbook of optics, vol III, Visual optics: issues pertinent to the optical designer. McGraw-Hill, New York

    Google Scholar 

  • Velger M (1998) Helmet-mounted displays and sights. Artech House, Boston

    Google Scholar 

  • von Hofsten C (1976) The role of convergence in visual space perception. Vis Res 16:193–198

    Article  Google Scholar 

  • Wang B, Ciuffreda K (2006) Depth of focus of the human eye: theory and clinical applications. Surv Ophthalmol 51:75

    Article  Google Scholar 

  • Wann J, Ruston S, Mon-Williams M (1995) Natural problems for stereoscopic depth perception in virtual environments. Vis Res 35:2731–2736

    Article  Google Scholar 

  • Wells M, Griffin M (1984) Benefits of helmet-mounted display image stabilization under whole-body vibration. Aviat Space Environ Med 55:13–18

    Google Scholar 

  • Wells M, Griffin M (1987a) A review and investigation of aiming and tracking performance with helmet-mounted sights. IEEE Trans Syst Man Cybern SMC-17:210–221

    Article  Google Scholar 

  • Wells M, Griffin M (1987b) Flight trial of a helmet-mounted display image stabilization system. Aviat Space Environ Med 55:319–322

    Google Scholar 

  • Wells M, Griffin M (1988) Tracking with the head during whole-body vibration. In: Patrick J, Duncan K (eds) Training, human decision making and control. Elsevier, Amsterdam

    Google Scholar 

  • Wells M, Haas M (1990) Head movements during simulated air-to-air engagements. In: Lewandowski R (ed) Proceedings of SPIE: helmet-mounted displays II. SPIE, Bellingham

    Google Scholar 

  • Winterbottom M, Patterson R, Pierce B, Taylor A (2006) Visual suppression of monocularly presented symbology against a fused background in simulation and training environment. Proc SPIE Helmet Head Mounted Disp XI Technol Appl 6224:2.1–2.10

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert Earl Patterson .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this entry

Cite this entry

Patterson, R.E. (2016). Human Interface Factors Associated with HWDs. In: Chen, J., Cranton, W., Fihn, M. (eds) Handbook of Visual Display Technology. Springer, Cham. https://doi.org/10.1007/978-3-319-14346-0_135

Download citation

Publish with us

Policies and ethics