Skip to main content

Interacting Cold Rydberg Atoms: A Toy Many-Body System

  • Chapter
  • First Online:
Niels Bohr, 1913-2013

Part of the book series: Progress in Mathematical Physics ((PMP,volume 68))

Abstract

This article presents recent experiments where cold atoms, excited to Rydberg states, interact with each other. It describes the basic properties of Rydberg atoms and their interactions, with the emphasis on the Rydberg blockade mechanism. The paper details a few experimental demonstrations using two individual atoms or atomic ensembles, as well as applications of this “toy many-body system” to quantum information processing using photons.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    In fact, one has a coupling to the two degenerate states \(\vert np, (n - 1)p\rangle\) and \(\vert (n - 1)p,np\rangle\). This is easily taken into account and does not change the conclusions of the qualitative discussion given here.

References

  1. Gallagher, T.: Rydberg atoms. Cambridge (1994).

    Google Scholar 

  2. Bohr, N.: On the constitution of atoms and molecules. Philos. Mag. 26, 1 (1913).

    Article  MathSciNet  MATH  Google Scholar 

  3. Saffman, M., Walker, T. G., and Mølmer, K.: Quantum information with Rydberg atoms. Rev. Mod. Phys. 82, 2313 (2010).

    Article  Google Scholar 

  4. Reinhard, A., Cubel Liebisch, T., Knuffman, B., and Raithel, G.: Level shifts of rubidium Rydberg states due to binary interactions. Phys. Rev. A 75, 032712 (2007).

    Article  Google Scholar 

  5. Raimond, J.-M., Vitrant, G., and Haroche, S.: Spectral line broadening due to interaction between very excited atoms: the dense Rydberg gas. J. Phys. B: At. Mol. Phys. 14 L655 (1981).

    Article  Google Scholar 

  6. Mourachko, I., Comparat, D., de Tomasi, F., Fioretti, A., Nosbaum, P., Akulin, V., and Pillet, P.: Many-body effects in a frozen Rydberg gas. Phys. Rev. Lett. 80, 253 (1998).

    Article  Google Scholar 

  7. Anderson, W.R., Veale, J.R., and Gallagher, T.F.: Resonant dipole-dipole energy transfer in a nearly frozen Rydberg gas. Phys. Rev. Lett. 80, 249 (1998).

    Article  Google Scholar 

  8. Jaksch, D., et al.: Fast Quantum gates for neutral atoms. Phys. Rev. Lett 85, 2208 (2000).

    Article  Google Scholar 

  9. Lukin, M.D., et al.: Dipole blockade and Quantum Information in Mesoscopic Atomic Ensembles. Phys. Rev. Lett 87, 037901 (2001).

    Article  Google Scholar 

  10. Chu, S.: Nobel Lecture: the manipulation of neutral particles. Rev. Mod. Phys. 70, 685 (1998).

    Article  Google Scholar 

  11. Cohen-Tannoudji, C.: Nobel Lecture: Manipulating atoms with photons. Rev. Mod. Phys. 70, 707 (1998).

    Article  Google Scholar 

  12. Phillips, W. D.: Nobel Lecture: Laser cooling and trapping of neutral atoms. Rev. Mod. Phys. 70, 721 (1998).

    Article  Google Scholar 

  13. Schlosser, N., Reymond, G., Protsenko, I., and Grangier, P.: Sub-poissonian loading of single atoms in a microscopic dipole trap. Nature 411, 1024 (2001).

    Article  Google Scholar 

  14. Sortais, Y. R. P., et al.: Diffraction-limited optics for single-atom manipulation. Phys. Rev. A 75, 013406 (2007).

    Article  Google Scholar 

  15. Urban, E., et al.: Observation of Rydberg blockade between two atoms. Nat. Phys. 5, 110 (2009).

    Article  Google Scholar 

  16. Isenhower, L., et al.: Demonstration of a Neutral Atom Controlled-NOT Quantum Gate. Phys. Rev. Lett. 104, 010503 (2010).

    Article  Google Scholar 

  17. Gaëtan, A., et al.: Observation of collective excitation of two individual atoms in the Rydberg blockade regime. Nat. Phys. 5, 115 (2009).

    Article  Google Scholar 

  18. Wilk, T., et al.: Entanglement of Two Individual Neutral Atoms Using Rydberg Blockade. Phys. Rev. Lett. 104, 010502 (2010).

    Article  Google Scholar 

  19. Béguin, L., Vernier, A., Chicireanu, R., Lahaye, T., and Browaeys, A.: Direct Measurement of the van der Waals Interaction between Two Rydberg Atoms. Phys. Rev. Lett. 110, 263201 (2013).

    Article  Google Scholar 

  20. Tong, D., et al.: Local blockade of Rydberg excitation in an ultracold gas. Phys. Rev. Lett. 93, 063001 (2004).

    Article  Google Scholar 

  21. Comparat, D., and Pillet, P.: Dipole blockade in a cold Rydberg atomic sample. J. Opt. Soc. Am. B 27, A208 (2010).

    Article  Google Scholar 

  22. Heidemann, R., et al.: Evidence for collective Rydberg excitation in the strong blockade regime. Phys. Rev. Lett. 99, 163601 (2007).

    Article  Google Scholar 

  23. Dudin, Y.O., Li, L., Bariani, F., and Kuzmich, A.: Observation of coherent many-body Rabi oscillations. Nat. Phys. 8, 790 (2012).

    Article  Google Scholar 

  24. Schauss, P., et al.: Observation of spatially ordered structures in a two-dimensional Rydberg gas. Nature 491, 87 (2012).

    Article  Google Scholar 

  25. Kimble, H. J.: The quantum internet. Nature 453, 1023 (2008).

    Article  Google Scholar 

  26. Pritchard, J.D., Weatherill, K.J., and Adams, C.S.: Non-linear optics using cold Rydberg atoms. Annual Review of cold atoms and molecules, 1, 301–350 (2013).

    Article  Google Scholar 

  27. Fleischauer, M., Imamoglu, A., and Marangos, J.P.: Electromagnetic induced transparency: optics in coherent media. Rev. Mod. Phys. 77, 633 (2005).

    Article  Google Scholar 

  28. Peyronel, T., et al.: Quantum nonlinear optics with single photons enabled by strongly interacting atoms. Nature 488, 57 (2012).

    Article  Google Scholar 

  29. Saffman, M., and Walker, T.G.: Creating single-atom and single-photon sources from entangled atomic ensembles. Phys. Rev. A 66, 065403 (2002).

    Article  Google Scholar 

  30. Maxwell, D., et al.: Storage and Control of Optical Photons Using Rydberg Polaritons. Phys. Rev. Lett. 110, 103001 (2013).

    Article  Google Scholar 

  31. Weimar, H., Müller, M., Lesanovsky, I., Zoller, P., and Püchler, H.P.: A Rydberg quantum simulator. Nat. Phys. 6, 382 (2010).

    Article  Google Scholar 

  32. Pupillo, G., Micheli, A., Boninsegni, M., Lesanovsky, I., and Zoller, P.: Strongly correlated gases of Rydberg dressed atoms: Quantum and classical Dynamics. Phys. Rev. Lett. 104, 223002 (2010).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Antoine Browaeys .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Browaeys, A., Lahaye, T. (2016). Interacting Cold Rydberg Atoms: A Toy Many-Body System. In: Darrigol, O., Duplantier, B., Raimond, JM., Rivasseau, V. (eds) Niels Bohr, 1913-2013. Progress in Mathematical Physics, vol 68. Birkhäuser, Cham. https://doi.org/10.1007/978-3-319-14316-3_7

Download citation

Publish with us

Policies and ethics