Skip to main content

Using Crowd-Sourced Data to Quantify the Complex Urban Fabric—OpenStreetMap and the Urban–Rural Index

  • Chapter
  • First Online:
OpenStreetMap in GIScience

Part of the book series: Lecture Notes in Geoinformation and Cartography ((LNGC))

Abstract

To date, hardly any classification of the urban–rural continuum exists that is based on objective and reproducible criteria. This particularly applies to regions of the world where accurate and up-to-date geodata is scarce Therefore, an Urban–Rural Index (URI) was developed as a contribution to the theoretical debate about the spatiality of urban–rural gradients as well as to make use of the increasing amount of crowd-sourced data especially in traditionally data-scarce regions of the developing world. The URI was calculated based on two subindexes representing: (1) the kernel density of existing buildings derived from high-resolution satellite imagery and (2) the travel times from the city center calculated based on OpenStreetMap data. The advantage of this index over common categorizations of urban, periurban, and rural areas lies in its ability to quantify the spatial implications of urban morphology. This paper draws on the analysis of three study sites: Bamenda in Cameroon, Moshi in Tanzania, and Bangalore in India. The URI as a reproducible representation of the spatial complexity of the urban landscape and its surrounding areas has the potential to contribute to the understanding of urban development patterns. Furthermore, it is a time- and cost-effective way for municipal town planning institutions to increase their knowledge of past, current, and future urbanization trends in their respective areas of responsibility.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    In Senegal and Malaysia, for example, settlements with more than 10,000 inhabitants are categorised as urban (UN 2001), while in Ethiopia, Liberia, or Cuba, a threshold of 2,000 people is applied (UN 2001; IFPRI and EDRI 2009).

  2. 2.

    The data is provided in separate files with different geometries: building footprints, land use categorisations, and natural features as polygons; populated places, points of particular interest as points; and railways, waterways, and roads as lines.

References

  • Alsharif A, Pradhan B (2014) Urban sprawl analysis of Tripoli Metropolitan city (Libya) using remote sensing data and multivariate logistic regression model. J Indian Soc Remote Sens 42(1):149–163. doi:10.1007/s12524-013-0299-7

    Article  Google Scholar 

  • Baerwald TJ (2010) Prospects for geography as an interdisciplinary discipline. Ann Assoc Am Geogr 100(3):493–501. doi:10.1080/00045608.2010.485443

    Article  Google Scholar 

  • Bakillah M, Liang SHL, Mobasheri A, Jokar Arsanjani J, Zipf A (2014): Fine resolution population mapping using OpenStreetMap points-of-interest. Int J Geogr Inf Sci 28(9):1940–1963. doi:10.1080/13658816.2014.909045

  • Benz UC, Hofmann P, Willhauck G, Lingenfelder G, Heynen M (2004) Multi-resolution, object-oriented fuzzy analysis of remote sensing data for GIS-ready information. ISPRS J Photogram Remote Sens 58:239–258. doi:10.1016/j.isprsjprs.2003.10.002

    Article  Google Scholar 

  • Blaschke T (2010) Object based image analysis for remote sensing. ISPRS J Photogram Remote Sens 65(1):2–16. doi:10.1016/j.isprsjprs.2009.06.004

    Article  Google Scholar 

  • Blaschke T, Strobl J (2001) Angewandte Geographische Informationsverarbeitung XIII. In: Beiträge zum AGIT-symposium 2001, Salzburg

    Google Scholar 

  • Brenner C (2010) Building extraction. In: Vosselman G, Maas H-G (eds) Airborne and terrestrial laser scanning. Whittles Publishing, Dunbeath

    Google Scholar 

  • Bureau Central des Recensements et des Etudes de Population (2010) Rapport de présentation des résultats définitifs. Yaoundé

    Google Scholar 

  • Coquery-Vidrovitch C (1991) The process of urbanization in Africa (from the origins to the beginning of independence). Afr Stud Rev 34(1):1–98. doi:10.2307/524256

    Article  Google Scholar 

  • De Maeyer M, Sotiaux A, Wolff E (2010) Comparison of standardized methods (object-oriented vs. pixel) to extract the urban built-up area: example of Lubumbashi (DRC). In: Proceedings of the GEOBIA 2010 conference, Ghent

    Google Scholar 

  • Drescher AW, Iaquinta DL (2002) Urbanization—linking development across the changing landscape, Rome

    Google Scholar 

  • Eiden G, Kayadjanian M, Vidal C (2000) Capturing landscape structures: tools. In: European Commission (ed) From land cover to landscape diversity in the European Union, pp 7–15. Brussels

    Google Scholar 

  • Forkuor G, Cofie O (2011) Dynamics of land-use and land-cover change in Freetown, Sierra Leone and its effects on urban and peri-urban agriculture—a remote sensing approach. Int J Remote Sens 32(4):1017–1037. doi:10.1080/01431160903505302

    Article  Google Scholar 

  • Freire S, Santos T, Navarro A, Soares F, Dinis J, Afonso N, Fonseca A, Tenedório J (2010) Extraction of buildings from Quickbird imagery for municipal planning purposes. Quality assessment considering existing mapping standards. In: International Society for Photogrammetry and Remote Sensing (ISPRS) (ed.) GEOBIA 2010-geographic object-based image analysis. Ghent University, Ghent, Belgium, 29 June–2 July

    Google Scholar 

  • Gatrell AC, Bailey TC, Diggle PJ, Rowlingson BS (1996) Spatial point pattern analysis and its implication in geographical epidemiology. Trans Inst Br Geogr 21(1):256–274. doi:10.2307/622936

    Article  Google Scholar 

  • Geofabrik GmbH (2011) OpenStreetMap-Daten download, Karlsruhe. Available via http://www.geofabrik.de. Accessed 20 Sept 2014

  • González-Aguilera D, Crespo-Matellán E, Hernández-López D, Rodríguez-Gonzálvez P (2013) Automated urban analysis based on LiDAR-derived building models. IEEE Trans Geosci Remote Sens 51(3):1844–1851

    Article  Google Scholar 

  • Hagenauer J, Helbich M (2012) Mining urban land-use patterns from volunteered geographic information by means of genetic algorithms and artificial neural networks. Int J Geogr Inf Sci 26(6):963–982. doi:10.1080/13658816.2011.619501

    Article  Google Scholar 

  • IFPRI, EDRI (2009) Urbanization and spatial connectivity in Ethiopia, summary of ESSP-II discussion paper no. 3: urbanization and spatial connectivity in Ethiopia: urban growth analysis using GIS (Dec 2009), Ethiopia strategy support program II (ESSP—II) research notes, No. 5, Washington, DC

    Google Scholar 

  • Jensen JR, Cowen DJ (1999) Remote sensing of urban/suburban infrastructure and socio-economic attributes. Photogram Eng Remote Sens 65:611–622

    Google Scholar 

  • Jokar Arsanjani J, Helbich M, Bakillah M, Hagenauer J, Zipf A (2013a) Toward mapping land-use patterns from volunteered geographic information. Int J Geogr Inf Sci 27(12):2264–2278. doi:10.1080/13658816.2013.800871

    Article  Google Scholar 

  • Jokar Arsanjani J, Helbich M, de Noronha Vaz E (2013b) Spatiotemporal simulation of urban growth patterns using agent-based modeling: the case of Tehran. Cities 32:33-42. doi:10.1016/j.cities.2013.01.005

  • Kavzoglu T, Sen YE, Cetin M (2009) Mapping urban road infrastructure using remotely sensed images. Int J Remote Sens 30(7):1759–1769. doi:10.1080/01431160802639582

    Article  Google Scholar 

  • Kloog I, Haim A, Portnov BA (2009) Using kernel density function as an urban analysis tool: Investigating the association between nightlight exposure and the incidence of breast cancer in Haifa, Israel. Comput Environ Urban Syst 33(1):55–63. doi:10.1016/j.compenvurbsys.2008.09.006

    Article  Google Scholar 

  • Knox PL, Pinch S (2007) Urban social geography: an introduction. 5th edn. Harlow

    Google Scholar 

  • Liu X, Li X, Li J, Wang Q (2013) Object-oriented remote sensing image classification and road damage adaptive extraction. In: Proceedings of the international conference on remote sensing, environment and transportation engineering (RSETE 2013). pp 140–143

    Google Scholar 

  • Mahendra B, Harikrishnan K, Krishne G (2010) Urban governance and master plan of Bangalore City. India J 7–2:1–18

    Google Scholar 

  • Mander Ü, Müller F, Wrbka T (2005) Functional and structural landscape indicators: Upscaling and downscaling problems. Ecol Ind 5(4):267–272. doi:10.1016/j.ecolind.2005.04.001

    Article  Google Scholar 

  • Marshall F, Waldman L, MacGregor H, Meht L, Randhawa P (2009) On the edge of sustainability: Perspectives on peri-urban dynamics. STEPS working paper 35, Brighton: STEPS Centre

    Google Scholar 

  • Mathieu R, Aryal J, Chong AK (2007) Object-based classification of Ikonos imagery for mapping large-scale vegetation communities in urban areas. Sensors 7(11):2860–2880. doi:10.3390/s7112860

    Article  Google Scholar 

  • McIntyre NE, Knowles-Yánez K, Hope D (2008) Urban ecology as an interdisciplinary field: differences in the use of “urban” between the social and natural sciences. In: Marzluff JM, Shulenberger E, Endlicher W (eds) Urban ecology, Boston, pp 49–65

    Google Scholar 

  • Moghadam HS, Helbich M (2013) Spatiotemporal urbanization processes in the megacity of Mumbai, India: a Markov chains-cellular automata urban growth model. Appl Geogr 40:140–149. doi:10.1016/j.apgeog.2013.01.009

    Article  Google Scholar 

  • Moshi Municipal Council (2010) District agricultural development plans 2010/2011, Moshi

    Google Scholar 

  • Myint SW, Gober P, Brazel A, Grossman-Clarke S, Weng Q (2011) Per-pixel versus object-based classification of urban land cover extraction using high spatial resolution imagery. Remote Sens Environ 115(5):1145–1161. doi:10.1016/j.rse.2010.12.017

    Article  Google Scholar 

  • Open Cities Project (2014) Kathmandu, Nepal. Available via http://opencitiesproject.com/cities/kathmandu/. Accessed 02 May 2013

  • OSM2GIS (2011) Data download section. Available via http://www.osm974.re/osm2gis/. Accessed 16 Aug 2014

  • Park R, Burgess EW, McKenzie RD (1925) The city. Chicago

    Google Scholar 

  • Pham HM, Yamaguchi Y, Bui TQ (2011) A case study on the relation between city planning and urban growth using remote sensing and spatial metrics. Landscape Urban Plann 100:223–230. doi:10.1016/j.landurbplan.2010.12.009

    Article  Google Scholar 

  • Phinn SR, Roelfsem CM, Mumby PJ (2012) Multi-scale, object-based image analysis for mapping geomorphic and ecological zones on coral reefs. Int J Remote Sens 33(12):3768–3797. doi:10.1080/01431161.2011.633122

    Article  Google Scholar 

  • Qian J, Zhou Q, Hou Q (2007) Comparison of pixel-based and object-oriented classification methods for extracting built-up areas in aridzone. In: International Society for Photogrammetry and Remote Sensing (ISPRS) (ed) Proceedings of the ISPRS workshop on updating geo-spatial databases with imagery and the 5th isprs workshop on dynamic and multi-dimensional GIS, pp 163–171

    Google Scholar 

  • Ramachandra TV, Bharath HA, Durgappa DS (2012) Insights to urban dynamics through landscape spatial pattern analysis. Int J Appl Earth Obs Geoinf 18:329–343. doi:10.1016/j.jag.2012.03.005

    Article  Google Scholar 

  • Salvati L, Munafo M, Morelli VG, Sabbi A (2012) Low-density settlements and land use changes in a Mediterranean urban region. Landscape Urban Plann 105:43–52. doi:10.1016/j.landurbplan.2011.11.020

    Article  Google Scholar 

  • Sarvestani MS, Ibrahim AL, Kanaroglou P (2011) Three decades of urban growth in the city of Shiraz, Iran: a remote sensing and geographic information systems application. Cities 28:320–329. doi:10.1016/j.cities.2011.03.002

    Article  Google Scholar 

  • Satterthwaite D, McGranahan G, Tacoli C (2010) Urbanization and its implications for food and farming. Philos Trans Roy Soc B Biol Sci 365(1554):2809–2820. doi:10.1098/rstb.2010.0136

    Article  Google Scholar 

  • Schlesinger J (2013) Agriculture along the urban–rural continuum: a GIS-based analysis of spatio-temporal dynamics in two medium-sized African cities. Freiburger Geographische Hefte, Freiburg

    Google Scholar 

  • Silverman BW (1986) Density estimation for statistics and data analysis. Monographs on statistics and applied probability, vol 26. London, New York

    Google Scholar 

  • Thapa RB, Murayama Y (2010) Drivers of urban growth in the Kathmandu valley, Nepal: Examining the efficacy of the analytic hierarchy process. Appl Geogr 30:70–83. doi:10.1016/j.apgeog.2009.10.002

    Article  Google Scholar 

  • UN (2001) Compendium of human settlements statistics 2001. Sixth Issue. New York

    Google Scholar 

  • UN (2014) World urbanization prospects. The 2014 revision: highlights. New York

    Google Scholar 

  • UN DESA (2011) Population distribution, urbanization, internal migration and development: an international perspective. New York

    Google Scholar 

  • UN-HABITAT (2010) The state of African cities 2010: governance, inequality and urban land markets. Nairobi

    Google Scholar 

  • UN-HABITAT (2013) State of the world’s cities 2012/2013. Prosperity of cities. Nairobi

    Google Scholar 

  • Uuemaa E, Antrop M, Roosaare J, Marja R, Mander Ü (2009) Landscape metrics and indices: an overview of their use in landscape research. Living Rev Landscape Res 3(1):5–28. doi:10.12942/lrlr-2009-1

    Google Scholar 

  • Van Kerm P (2003) Adaptive kernel density estimation. The Stata J 3(2):148–156

    Google Scholar 

  • Vermeiren K, Van Rompaey A, Loopmans M, Serwajja E, Mukwaya P (2012) Urban growth of Kampala, Uganda: Pattern analysis and scenario development. Landscape Urban Plann 106:199–206. doi:10.1016/j.landurbplan.2012.03.006

    Article  Google Scholar 

  • von Thünen JH (1910) Der isolierte Staat in Beziehung auf Landwirtschaft und Nationalökonomie. Neudruck nach der Ausgabe letzter Hand (2. bzw. 1. Auflage, 1842 bzw. 1850), Jena

    Google Scholar 

  • Wakode HB, Baier K, Jha R (2014) Analysis of urban growth using landsat TM/ETM data and GIS—a case study of Hyderabad, India. Arab J Geosci 7:109–121. doi:10.1007/s12517-013-0843-3

    Article  Google Scholar 

  • Wang H, Shi S, Rao X (2013) A study of urban density in Shenzhen: the relationship between street morphology, building density and land use. In: Kim YO, Park HT, Seo KW (eds) Proceedings of the ninth international space syntax symposium, Seoul

    Google Scholar 

  • White MJ, Mberu BU, Collinson MA (2008) African urbanization: recent trends and implications. In Martine G (ed) The new global frontier. Urbanization, poverty and environment in the 21st century. London, pp 301–16

    Google Scholar 

  • Wu Q, Chen R, Sun H, Cao Y (2011) Urban building density detection using high resolution SAR imagery. In: Stilla U, Gamba P, Juergens C, Maktav D (eds) JURSE 2011—joint urban remote sensing event. Munich, 11–13 Apr 2011

    Google Scholar 

  • Wurm M, Taubenböck H, Dech S (2010) Quantification of urban structure on building block level utilizing multisensoral remote sensing data. In: Michel U, Civco DL (eds) Proceedings of SPIE. Earth resources and environmental remote sensing/GIS applications, vol 7831

    Google Scholar 

  • Ye Y, Van Nes A (2013) Measuring urban maturation processes in Dutch and Chinese new towns: combining street network configuration with building density and degree of land use diversification through GIS. J Space Syntax 4(1):18–37

    Google Scholar 

  • Yu B, Liu H, Wu J, Hu Y, Zhang L (2010) Automated derivation of urban building density information using airborne LiDAR data and object-based method. Landscape Urban Plann 98:210–219. doi:10.1016/j.landurbplan.2010.08.004

    Article  Google Scholar 

  • Zollweg JD, Gartley MG, Roskovensky J, Mercier J (2012) Using GIS databases for simulated nightlight imagery. In: Pellechia MF, Sorensen RJ, Dockstader SL, Palaniappan K (eds) Proceedings of SPIE. Geospatial InfoFusion II, vol 8396

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Johannes Schlesinger .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Schlesinger, J. (2015). Using Crowd-Sourced Data to Quantify the Complex Urban Fabric—OpenStreetMap and the Urban–Rural Index. In: Jokar Arsanjani, J., Zipf, A., Mooney, P., Helbich, M. (eds) OpenStreetMap in GIScience. Lecture Notes in Geoinformation and Cartography. Springer, Cham. https://doi.org/10.1007/978-3-319-14280-7_15

Download citation

Publish with us

Policies and ethics