Skip to main content

Applying Regularization Least Squares Canonical Correlation Analysis in Extreme Learning Machine for Multi-label Classification Problems

  • Conference paper
Proceedings of ELM-2014 Volume 1

Abstract

Multi-label classification is a type of classification where each instance is associated with a set of labels. Many methods such as BP-MLL, rank-SVM, and MLRBF have been proposed for multi-label classification but their learning abilities are too slow. Extreme Learning Machine (ELM) is a well known algorithm for SLFNs that can learn faster than the traditional gradient-base neural networks and it also provides better generalization performance. However, the classification performance of ELM involving multi-label classification may not be good enough despite its advantage in fast training. Therefore, this paper proposes two multi-label classification approaches in ELM. The first approach uses the 1-norm regularized Least-square for Canonical Correlation Analysis (1-norm LSCCA) to obtain the projection vectors, which in turn uses the vectors to provide the new information. Then, ELM is then used to learn this new information in the new space. The second approach applies the ensemble method to the first approach to reduce the random effects of ELM. The experimental results show that the two proposed methods can improve the performance of ELM in multi-label classification and are also faster than the previous multi-label classification methods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Tsoumakas, G., Katakis, I.: Multi Label Classification: An Overview. Int. J. Data Warehousing and Mining. 3, 1–13 (2007)

    Article  Google Scholar 

  2. Madjarov, G., Kocev, D., Gjorgjevikj, D., Deroski, S.: An extensive experimental comparison of methods for multi-label learning. Pattern Recogn. 45, 3084–3104 (2012)

    Article  Google Scholar 

  3. Zhang, Y., Schneider, J.G.: Multi-label output codes using canonical correlation analysis. In: International Conference on Artificial Intelligence and Statistics, USA, pp. 873–882 (2011)

    Google Scholar 

  4. Sun, L., Ji, S., Ye, J.: A Least Squares Formulation for Canonical Correlation Analysis. In: Proceedings of the 25th International Conference on Machine Learning, pp. 1024–1031. ACM, New York (2008)

    Google Scholar 

  5. Huang, G.B., Zhu, Q.Y., Siew, C.K.: Extreme learning machine: Theory and applications. Neurocomputing 70, 489–501 (2006)

    Article  Google Scholar 

  6. Huang, G.B., Zhou, H., Ding, X., Zhang, R.: Extreme learning machine for regression and multiclass classification. IEEE Trans Syst Man Cybern B Cybern 42, 513–529 (2012)

    Article  Google Scholar 

  7. Kongsorot, Y., Horata, P.: Multi-label classification with extreme learning machine. In: 6th International Conference on Knowledge and Smart Technology (KST), Thailand, pp. 81–86 (2014)

    Google Scholar 

  8. Dietterich, T.G.: Ensemble methods in machine learning. In: Multiple classifier systems, pp. 1–15. Springer (2000)

    Google Scholar 

  9. Sun, L., Ji, S., Ye, J.: Canonical Correlation Analysis for Multilabel Classification: A Least-Squares Formulation, Extensions, and Analysis. IEEE Trans. Pattern Anal. Mach. Intell. 33, 194–200 (2011)

    Article  Google Scholar 

  10. Read, J., Pfahringer, B., Holmes, G., Frank, E.: Classifier Chains for Multi-label Classification. In: Proceedings of the European Conference on Machine Learning and Knowledge Discovery in Databases: Part II, pp. 254–269. Berlin (2009)

    Google Scholar 

  11. Read, J., Pfahringer, B., Holmes, G.: Multi-label Classification Using Ensembles of Pruned Sets. In: 8th IEEE International Conference on Data Mining (ICDM 2008), Pisa, pp. 995–1000 (2008)

    Google Scholar 

  12. Tsoumakas, G., Vlahavas, I.P.: Random k-Labelsets: An Ensemble Method for Multilabel Classification. In: Kok, J.N., Koronacki, J., Lopez de Mantaras, R., Matwin, S., Mladenič, D., Skowron, A. (eds.) ECML 2007. LNCS (LNAI), vol. 4701, pp. 406–417. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  13. Tsoumakas, G., Katakis, I., Vlahavas, I.: Effective and Efficient Multilabel Classification in Domains with Large Number of Labels. In: Proc. ECML/PKDD 2008 Workshop on Mining Multidimensional Data (MMD 2008), Belgium (2008)

    Google Scholar 

  14. Fürnkranz, J.: Round Robin Classification. J. Mach. Learn. Res. 2, 721–747 (2002)

    MATH  MathSciNet  Google Scholar 

  15. Wu, T.F., Lin, C.J., Weng, R.C.: Probability Estimates for Multi-class Classification by Pairwise Coupling. J. Mach. Learn. Res. 5, 975–1005 (2004)

    MATH  MathSciNet  Google Scholar 

  16. Freund, Y., Schapire, R.E.: A Decision-Theoretic Generalization of On-Line Learning and an Application to Boosting. J. Comput. System Sci. 55, 119–139 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  17. Zhang, M.L., Zhou, Z.H.: Ml-knn: A lazy learning approach to multi-label learning. Pattern Recogn. 40, 2038–2048 (2007)

    Article  MATH  Google Scholar 

  18. Clare, A.J., King, R.D.: Knowledge Discovery in Multi-label Phenotype Data. In: Siebes, A., De Raedt, L. (eds.) PKDD 2001. LNCS (LNAI), vol. 2168, pp. 42–53. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  19. Zhang, M.L., Zhou, Z.H.: Multilabel Neural Networks with Applications to Functional Genomics and Text Categorization. IEEE Trans. Knowl. Data Eng. 18, 1338–1351 (2006)

    Article  Google Scholar 

  20. Zhang, M.L.: Ml-rbf: RBF Neural Networks for Multi-Label Learning. Neural Process. Lett. 29, 61–74 (2009)

    Article  Google Scholar 

  21. Elisseeff, A., Weston, J.: A Kernel Method for Multi-Labelled Classification. In: Advances in Neural Information Processing Systems, vol. 14, pp. 681–687. MIT Press (2001)

    Google Scholar 

  22. Hotelling, H.: Relations between two sets of variates. Biometrika 28, 321–377 (1936)

    Article  MATH  Google Scholar 

  23. Tibshirani, R.: Regression Shrinkage and Selection Via the Lasso. J. Roy. Statist. Soc. Ser. B. 58, 267–288 (1994)

    MathSciNet  Google Scholar 

  24. Penrose, R.: A generalized inverse for matrices. In: Mathematical Proceedings of the Cambridge Philosophical Society, pp. 406–413. Cambridge Univ Press (1955)

    Google Scholar 

  25. Rong, H.J., Huang, G.B., Ong, Y.S.: Extreme learning machine for multi-categories classification applications. In: IEEE International Joint Conference on Neural Networks (IEEE World Congress on Computational Intelligence), pp. 1709–1713. IEEE (2008)

    Google Scholar 

  26. Huang, G.B., Wang, D.H., Lan, Y.: Extreme learning machines: a survey. Int. J Mach. Learn. and Cyber. 2, 107–122 (2011)

    Article  Google Scholar 

  27. Lan, Y., Soh, Y.C., Huang, G.B.: Ensemble of online sequential extreme learning machine. Neurocomputing 72, 3391–3395 (2009)

    Article  Google Scholar 

  28. Liu, N., Wang, H.: Ensemble Based Extreme Learning Machine. IEEE Signal Process. Lett. 17, 754–757 (2010)

    Article  Google Scholar 

  29. Zhu, Q.Y., Qin, A.K., Suganthan, P.N., Huang, G.B.: Evolutionary extreme learning machine. Pattern Recogn. 38, 1759–1763 (2005)

    Article  MATH  Google Scholar 

  30. Freund, Y.: Boosting a weak learning algorithm by majority. Inform. Comput. 121, 256–285 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  31. Fawcett, T.: ROC graphs: Notes and practical considerations for researchers. Mach. Learn. 31, 1–38 (2004)

    MathSciNet  Google Scholar 

  32. Brown, C.D., Davis, H.T.: Receiver operating characteristics curves and related decision measures: A tutorial. Chemometr. Intell. Lab. 80, 24–38 (2006)

    Article  Google Scholar 

  33. Zou, K.H., OMalley, A.J., Mauri, L.: Receiver-operating characteristic analysis for evaluating diagnostic tests and predictive models. Circulation 115, 654–657 (2007)

    Article  Google Scholar 

  34. Zhang, Y., Schneider, J.G.: Multi-label output codes using canonical correlation analysis. In: International Conference on Artificial Intelligence and Statistics, USA, pp. 873–882 (2011)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yanika Kongsorot .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Kongsorot, Y., Horata, P., Sunat, K. (2015). Applying Regularization Least Squares Canonical Correlation Analysis in Extreme Learning Machine for Multi-label Classification Problems. In: Cao, J., Mao, K., Cambria, E., Man, Z., Toh, KA. (eds) Proceedings of ELM-2014 Volume 1. Proceedings in Adaptation, Learning and Optimization, vol 3. Springer, Cham. https://doi.org/10.1007/978-3-319-14063-6_32

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-14063-6_32

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-14062-9

  • Online ISBN: 978-3-319-14063-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics