Skip to main content

Morphomechanics of Plants

  • Chapter
  • First Online:
Morphomechanics of Development

Abstract

Plants operate with tensional and compressive stresses that are extreme by animal standards. These stresses vary sharply on sub- and supracellular scales, but are orchestrated at the organismal level and evolve in a well-defined way during morphogenetic events. Plant morphogenesis is accomplished by localized and anisotropic yielding of cell walls that accommodate turgor-driven extension without losing mechanical integrity. Plant cell walls are connected cohesively into a stress-allocating network enabling mechanical forces to be efficiently transmitted and serve as a long-distance messenger that plays an important integrative and regulatory role. Mechanical forces control the dynamics of both cortical microtubules and phytohormone auxin transporters, the two key players in guiding plant morphogenesis. The onset of organogenetic events in shoots and roots is associated with stereotypical changes in the pattern of tissue stresses. Initiation of leaves, lateral roots, and root hairs can be rationalized within the framework of the concept of stress hyperrestoration.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Sugary mucilage secreted on the sundew’s leaf surface in order to attract and glue insects.

References

  • Abeysekera RM, McCully ME (1994) The epidermal surface of the maize root tip. III. Isolation of the surface and characterization of some of its structural and mechanical properties. New Phytol 127:321–333

    Google Scholar 

  • Baluška F, Mancuso S (2013) Root apex transition zone as oscillatory zone. Front Plant Sci 4:354

    PubMed Central  PubMed  Google Scholar 

  • Baluška F, Volkmann D (2011) Mechanical aspects of gravity-controlled growth, development and morphogenesis. In: Wojtaszek P (ed) Mechanical integration of plant cells and plants. Signaling and communication in plants, vol 9, pp 195–223

    Google Scholar 

  • Baluška F, Barlow PW, Kubica Š (1994) Importance of the post-mitotic growth (PIG) region for growth and development of roots. Plant Soil 167:31–42

    Google Scholar 

  • Band LR, Wells DM, Larrieu A, Sun J, Middleton AM et al (2012) Root gravitropism is regulated by a transient lateral auxin gradient controlled by a tipping-point mechanism. Proc Natl Acad Sci USA 109:4668–4673

    CAS  PubMed Central  PubMed  Google Scholar 

  • Baskin TI (2001) On the alignment of cellulose microfibrils by cortical microtubules: a review and a model. Protoplasma 215:150–171

    CAS  PubMed  Google Scholar 

  • Baskin TI, Betzner AS, Hoggart R, Cork A, Williamson RE (1992) Root morphology mutants in Arabidopsis thaliana. Aust J Plant Physiol 19:427–437

    Google Scholar 

  • Baum SF, Dubrovsky JG, Rost TL (2002) Apical organization and maturation of the cortex and vascular cylinder in Arabidopsis thaliana (Brassicaceae) roots. Am J Bot 89:908–920

    PubMed  Google Scholar 

  • Behrens HM, Gradmann D, Sievers A (1985) Membrane-potential responses following gravistimulation in roots of Lepidium sativum L. Planta 163:463–472

    CAS  PubMed  Google Scholar 

  • Bemis SM, Torii KU (2007) Autonomy of cell proliferation and developmental programs during Arabidopsis aboveground organ morphogenesis. Dev Biol 304:367–381

    CAS  PubMed  Google Scholar 

  • Bringmann M, Li E, Sampathkumar A, Kocabek T, Hauser MT, Persson S (2012) POM-POM2/cellulose synthase interacting1 is essential for the functional association of cellulose synthase and microtubules in Arabidopsis. Plant Cell 24:163–177

    CAS  PubMed Central  PubMed  Google Scholar 

  • Burian A, Ludynia M, Uyttewaal M, Traas J, Boudaoud A, Hamant O, Kwiatkowska D (2013) A correlative microscopy approach relates microtubule behaviour, local organ geometry, and cell growth at the Arabidopsis shoot apical meristem. J Exp Bot 64:5753–5767

    CAS  PubMed Central  PubMed  Google Scholar 

  • Burström HG (1971) Tissue tensions during cell elongation in wheat roots and a comparison with contractile roots. Physiol Plant 25:509–513

    Google Scholar 

  • Catala C, Rose JK, Bennett AB (2000) Auxin-regulated genes encoding cell wall-modifying proteins are expressed during early tomato fruit growth. Plant Physiol 122:527–534

    CAS  PubMed Central  PubMed  Google Scholar 

  • Clowes FAL, Wadekar R (1989) Instability in the root meristem of Zea mays L. during growth. New Phytol 111:19–24

    Google Scholar 

  • Corson F, Hamant O, Bohn S, Traas J, Boudaoud A, Couder Y (2009) Turning a plant tissue into a living cell froth through isotropic growth. Proc Natl Acad Sci USA 106:8453–8458

    CAS  PubMed Central  PubMed  Google Scholar 

  • Cosgrove DJ (2000) Loosening of plant cell walls by expansins. Nature 407:321–326

    CAS  PubMed  Google Scholar 

  • Cunninghame ME, Lyndon RF (1986) The relationship between the distribution of periclinal cell divisions in the shoot apex and leaf initiation. Ann Bot 57:737–746

    Google Scholar 

  • Darwin CR (1860) Letter to D. Oliver (16 Nov. 1860). Darwin correspondence database. http://www.darwinproject.ac.uk/entry-2985

  • Darwin CR (1875) Insectivorous plants. John Murray, London

    Google Scholar 

  • Darwin F, Acton EH (1894) Practical physiology of plants. Cambridge University Press, Cambridge

    Google Scholar 

  • De Smet I, Tetsumura T, De Rybel B, Frei dit Frey N, Laplaze L et al (2007) Auxin-dependent regulation of lateral root positioning in the basal meristem of Arabidopsis. Development 134:681–690

    PubMed  Google Scholar 

  • Ditengou FA, Teale WD, Kochersperger P, Flittner KA, Kneuper I et al (2008) Mechanical induction of lateral root initiation in Arabidopsis thaliana. Proc Natl Acad Sci USA 105:18818–18823

    CAS  PubMed Central  PubMed  Google Scholar 

  • Driss-Ecole D, Legue V, Carnero-Diaz E, Perbal G (2008) Gravisensitivity and automorphogenesis of lentil seedling roots grown on board the international space station. Physiol Plant 134:191–201

    CAS  PubMed  Google Scholar 

  • Dubrovsky JG, Rost TL, Colon-Carmona A, Doerner P (2001) Early primordium morphogenesis during lateral root initiation in Arabidopsis thaliana. Planta 214:30–36

    CAS  PubMed  Google Scholar 

  • Dubrovsky JG, Sauer M, Napsucialy-Mendivil S, Ivanchenko MG, Friml J, Shishkova S, Celenza J, Benková E (2008) Auxin acts as a local morphogenetic trigger to specify lateral root founder cells. Proc Natl Acad Sci USA 105:8790–8794

    CAS  PubMed Central  PubMed  Google Scholar 

  • Dumais J, Steele CR (2000) New evidence for the role of mechanical forces in the shoot apical meristem. J Plant Growth Regul 19:7–18

    CAS  PubMed  Google Scholar 

  • Esser AT, Smith KC, Weaver JC, Levin M (2006) A mathematical model of morphogen electrophoresis through gap junctions. Dev Dyn 235:2144–2159

    CAS  PubMed  Google Scholar 

  • Fisher DD, Cyr RJ (2000) Mechanical forces in plant growth and development. Grav Space Biol Bull 13:67–73

    CAS  Google Scholar 

  • Fleming AJ, McQueen-Mason S, Mandel T, Kuhlemeier C (1997) Induction of leaf primordia by the cell wall protein expansin. Science 276:1415–1418

    CAS  Google Scholar 

  • Fleming AJ, Caderas D, Wehrli E, McQueen-Mason S, Kuhlemeier C (1999) Analysis of expansin-induced morphogenesis on the apical meristem of tomato. Planta 208:166–174

    CAS  Google Scholar 

  • Foard DE (1971) The initial protrusion of a leaf primordium can occur without concurrent periclinal cell divisions. Can J Bot 49:1601–1603

    Google Scholar 

  • Fricke W, Jarvis M, Brett C (2000) Turgor pressure, membrane tension and the control of exocytosis in higher plants. Plant Cell Environ 23:999–1003

    Google Scholar 

  • Gager CS (1916) Fundamentals of botany. P. Blakiston’s Son & Co, Philadelphia

    Google Scholar 

  • Geldner N, Friml J, Stierhof YD, Jurgens G, Palme K (2001) Auxin transport inhibitors block PIN1 cycling and vesicle trafficking. Nature 413:425–428

    CAS  PubMed  Google Scholar 

  • Goss MJ, Russell RS (1980) Effects of mechanical impedance on root growth in barley (Hordeum vulgare L.) III Observations on the mechanism of response. J Exp Bot 31:577–588

    Google Scholar 

  • Green PB (1962) Mechanisms for plant cellular morphogenesis. Science 138:1404–1405

    CAS  PubMed  Google Scholar 

  • Green PB (1999) Expression of pattern in plants: combining molecular and calculus-based biophysical paradigms. Am J Bot 86:1059–1076

    CAS  PubMed  Google Scholar 

  • Grunewald W, Friml J (2010) The march of the PINs: developmental plasticity by dynamic polar targeting in plant cells. EMBO J 29:2700–2714

    CAS  PubMed Central  PubMed  Google Scholar 

  • Guenot B, Bayer E, Kierzkowski D, Smith RS, Mandel T, Žádníková P, Benková E, Kuhlemeier C (2012) PIN1-independent leaf initiation in Arabidopsis. Plant Physiol 159:1501–1510

    CAS  PubMed Central  PubMed  Google Scholar 

  • Hamant O, Heisler MG, Jonsson H, Krupinski P, Uyttewaal M et al (2008) Developmental patterning by mechanical signals in Arabidopsis. Science 322:1650–1655

    CAS  PubMed  Google Scholar 

  • Hardham AR, Green PB, Lang JM (1980) Reorganization of cortical microtubules and cellulose deposition during leaf formation of Graptopetalum paraguayense. Planta 149:181–195

    CAS  PubMed  Google Scholar 

  • Heath IB (1974) A unified hypothesis for the role of membrane bound enzyme complexes and microtubules in plant cell wall synthesis. J Theor Biol 48:445–449

    CAS  PubMed  Google Scholar 

  • Heisler MG, Hamant O, Krupinski P, Uyttewaal M, Ohno C, Jönsson H, Traas J, Meyerowitz EM (2010) Alignment between PIN1 polarity and microtubule orientation in the shoot apical meristem reveals a tight coupling between morphogenesis and auxin transport. PLoS Biol 8:e1000516

    PubMed Central  PubMed  Google Scholar 

  • Hejnowicz Z, Sievers A (1996) Acid-induced elongation of Reynoutria stems requires tissue stresses. Physiol Plant 98:345–348

    CAS  Google Scholar 

  • Hejnowicz Z, Sondag C, Alt W, Sievers A (1998) Temporal course of graviperception in intermittently stimulated cress roots. Plant Cell Environ 21:1293–1300

    CAS  PubMed  Google Scholar 

  • Hernández LF, Green PB (1993) Transductions for the expression of structural pattern: analysis in sunflower. Plant Cell 5:1725–1738

    PubMed Central  PubMed  Google Scholar 

  • Himmelspach R, Willamson RE, Wasteneys GO (2003) Cellulose microfibril alignment recovers from DCB-induced disruption despite microtubule disorganization. Plant J 36:565–575

    CAS  PubMed  Google Scholar 

  • Hohl M, Schopfer P (1992) Cell-wall tension of the inner tissues of the maize coleoptile and its potential contribution to auxin-mediated organ growth. Planta 188:340–344

    CAS  PubMed  Google Scholar 

  • Hussey G (1971) Cell division and expansion and resultant tissue tensions in the shoot apex during the formation of a leaf primordium in the tomato. J Exp Bot 22:702–714

    Google Scholar 

  • Hussey G (1973) Mechanical stress in the shoot apices of Euphorbia, Lycopersicon, and Pisum under controlled turgor. Ann Bot 37:57–64

    Google Scholar 

  • Hutchison KW, Singer PB, McInnis S, Diaz-Salaz C, Greenwood MS (1999) Expansins are conserved in conifers and expressed in hypocotyls in response to exogenous auxin. Plant Physiol 120:827–831

    CAS  PubMed Central  PubMed  Google Scholar 

  • Imaichi R, Hiratsuka R (2007) Evolution of shoot apical meristem structures in vascular plants with respect to plasmodesmatal network. Am J Bot 94:1911–1921

    PubMed  Google Scholar 

  • Ingber DE (2003) Tensegrity II. How structural networks influence cellular information processing networks. J Cell Sci 116:1397–1408

    CAS  PubMed  Google Scholar 

  • Jones AR, Kramer EM, Knox K, Swarup R, Bennett MJ, Lazarus CM, Leyser HM, Grierson CS (2009) Auxin transport through non-hair cells sustains root-hair development. Nat Cell Biol 11:78–84

    CAS  PubMed Central  PubMed  Google Scholar 

  • Jönsson H, Gruel J, Krupinski P, Troein C (2012) On evaluating models in computational morphodynamics. Curr Opin Plant Biol 15:103–110

    PubMed  Google Scholar 

  • Kasprowicz A, Smolarkiewicz M, Wierzchowiecka M, Michalak M, Wojtaszek P (2011) Introduction: tensegral world of plants. In: Wojtaszek P (ed) Mechanical integration of plant cells and plants. Signaling and communication in plants, vol 9, pp 1–25

    Google Scholar 

  • Kidner C, Sundaresan V, Roberts K, Dolan L (2000) Clonal analysis of the Arabidopsis root confirms that position, not lineage, determines cell fate. Planta 211:191–199

    CAS  PubMed  Google Scholar 

  • Kierzkowski D, Nakayama N, Routier-Kierzkowska AL, Weber A, Bayer E, Schorderet M, Reinhardt D, Kuhlemeier C, Smith RS (2012) Elastic domains regulate growth and organogenesis in the plant shoot apical meristem. Science 335:1096–1099

    CAS  PubMed  Google Scholar 

  • Kutschera U (1989) Tissue stresses in growing plant organs. Physiol Plant 77:157–163

    Google Scholar 

  • Kwiatkowska D, Dumais J (2003) Growth and morphogenesis at the vegetative shoot apex of Anagallis arvensis L. J Exp Bot 54:1585–1595

    CAS  PubMed  Google Scholar 

  • Kwiatkowska D, Nakielski J (2011) Mechanics of the meristems. In: Wojtaszek P (ed) Mechanical integration of plant cells and plants. Signaling and communication in plants, vol 9, pp 133–172

    Google Scholar 

  • Laskowski MJ, Williams ME, Nusbaum HC, Sussex IM (1995) Formation of lateral root meristems is a two-stage process. Development 121:3303–3310

    CAS  PubMed  Google Scholar 

  • Laskowski MJ, Grieneisen VA, Hofhuis H, Hove CA, Hogeweg P, Marée AF, Scheres B (2008) Root system architecture from coupling cell shape to auxin transport. PLoS Biol 6:307

    Google Scholar 

  • Lavenus J, Goh T, Roberts I, Guyomarc’h S, Lucas M, De Smet I, Fukaki H, Beeckman T, Bennett M, Laplaze L (2013) Lateral root development in Arabidopsis: fifty shades of auxin. Trends Plant Sci 18:450–458

    CAS  PubMed  Google Scholar 

  • Ledbetter MC, Porter KR (1963) A “microtubule” in plant cell fine structure. J Cell Biol 12:239–250

    Google Scholar 

  • Li S, Lei L, Somerville CR, Gu Y (2012) Cellulose synthase interactive protein 1 (CSI1) links microtubules and cellulose synthase complexes. Proc Natl Acad Sci USA 109:185–190

    CAS  PubMed Central  PubMed  Google Scholar 

  • Link BM, Cosgrove DJ (1998) Acid-growth response and alpha-expansins in suspension cultures of bright yellow 2 tobacco. Plant Physiol 118:907–916

    CAS  PubMed Central  PubMed  Google Scholar 

  • Lintilhac PM (2013) The problem of morphogenesis: unscripted biophysical control systems in plants. Protoplasma 251:25–36

    PubMed Central  PubMed  Google Scholar 

  • Lintilhac PM, Vesecky TB (1984) Stress-induced alignment of division plane in plant tissues grown in vitro. Nature 307:363–364

    Google Scholar 

  • Lipchinsky A (2013) How do expansins control plant growth? A model for cell wall loosening via defect migration in cellulose microfibrils. Acta Physiol Plant 35:3277–3284

    CAS  Google Scholar 

  • Lucas M, Godin C, Jay-Allemand C, Laplaze L (2008) Auxin fluxes in the root apex co-regulate gravitropism and lateral root initiation. J Exp Bot 59:55–66

    CAS  PubMed  Google Scholar 

  • Lucas M, Kenobi K, von Wangenheim D, Voβ U, Swarup K, De Smet I et al (2013) Lateral root morphogenesis is dependent on the mechanical properties of the overlaying tissues. Proc Natl Acad Sci USA 110:5229–5234

    CAS  PubMed Central  PubMed  Google Scholar 

  • Lynch TM, Lintilhac PM (1997) Mechanical signals in plant development: a new method for single cell studies. Dev Biol 181:246–256

    CAS  PubMed  Google Scholar 

  • Lyndon RF (1970) Rates of cell division in the shoot apical meristem of Pisum. Ann Bot 34:1–17

    Google Scholar 

  • Massa GD, Gilroy S (2003) Touch modulates gravity sensing to regulate the growth of primary roots of Arabidopsis thaliana. Plant J 33:435–445

    PubMed  Google Scholar 

  • McQueen-Mason SJ, Durachko DM, Cosgrove DJ (1992) Two endogenous proteins that induce cell-wall extension in plants. Plant Cell 4:1425–1433

    CAS  PubMed Central  PubMed  Google Scholar 

  • Meckel T, Hurst AC, Thiel G, Homann U (2005) Guard cells undergo constitutive and pressure-driven membrane turnover. Protoplasma 226:23–29

    CAS  PubMed  Google Scholar 

  • Mirabet V, Das P, Boudaoud A, Hamant O (2011) The role of mechanical forces in plant morphogenesis. Annu Rev Plant Biol 62:365–385

    CAS  PubMed  Google Scholar 

  • Nakayama N, Smith RS, Mandel T, Robinson S, Kuhlemeier C, Kimura S, Boudaoud A (2012) Mechanical regulation of auxin-mediated growth. Curr Biol 22:1468–1476

    CAS  PubMed  Google Scholar 

  • Newcomb EH (1969) Plant microtubules. Ann. Rev. Plant Physiol 20:253–288

    CAS  Google Scholar 

  • Newson RB, Parker JS, Barlow PW (1993) Are lateral roots of tomato spaced by multiples of a fundamental distance? Ann Bot 71:549–557

    Google Scholar 

  • O’Connor DL, Runions A, Sluis A, Bragg J, Vogel JP, Prusinkiewicz P, Hake S (2014) A division in PIN-mediated auxin patterning during organ initiation in grasses. PLoS Comput Biol 10:e1003447

    PubMed Central  PubMed  Google Scholar 

  • Okada K, Shimura Y (1990) Reversible root tip rotation in Arabidopsis seedlings induced by obstacle-touching stimulus. Science 250:274–276

    CAS  PubMed  Google Scholar 

  • Ottenschläger I, Wolff P, Wolverton C, Bhalerao RP, Sandberg G, Ishikawa H, Evans M, Palme K (2003) Gravity-regulated differential auxin transport from columella to lateral root cap cells. Proc Natl Acad Sci USA 100:2987–2991

    PubMed Central  PubMed  Google Scholar 

  • Paredez AR, Somerville CR, Ehrhardt DW (2006) Visualization of cellulose synthase demonstrates functional association with microtubules. Science 312:1491–1495

    CAS  PubMed  Google Scholar 

  • Pien S, Wyrzykowska J, McQueen-Mason S, Smart C, Fleming A (2001) Local expression of expansin induces the entire process of leaf development and modifies leaf shape. Proc Natl Acad Sci USA 98:11812–11817

    CAS  PubMed Central  PubMed  Google Scholar 

  • Pohlheim F, Kaufhold M (1985) On the formation of variegation patterns in Filipendula ulmaria ‘Aureo-Variegata’ through changes in the plane of cell division in the epidermisses of young leaves. Flora 177:167–174

    Google Scholar 

  • Potocka IJ, Szymanowska-Pułka J, Karczewski J, Nakielski J (2011) Effect of mechanical stress on Zea root apex. I. Mechanical stress leads to the switch from closed to open meristem organization. J Exp Bot 62:4583–4593

    CAS  PubMed Central  PubMed  Google Scholar 

  • Proseus TE, Boyer JS (2005) Turgor pressure moves polysaccharides into growing cell walls of Chara corallina. Ann Bot 95:967–979

    PubMed Central  PubMed  Google Scholar 

  • Reddy GV, Heisler MG, Ehrhardt DW, Meyerowitz EM (2004) Real-time lineage analysis reveals oriented cell divisions associated with morphogenesis at the shoot apex of Arabidopsis thaliana. Development 131:4225–4237

    CAS  PubMed  Google Scholar 

  • Reinhardt D, Wittwer F, Mandel T, Kuhlemeier C (1998) Localized upregulation of a new expansin gene predicts the site of leaf formation in the tomato meristem. Plant Cell 10:1427–1437

    CAS  PubMed Central  PubMed  Google Scholar 

  • Reinhardt D, Mandel T, Kuhlemeier C (2000) Auxin regulates the initiation and radial position of plant lateral organs. Plant Cell 12:507–518

    CAS  PubMed Central  PubMed  Google Scholar 

  • Reinhardt D, Pesce E-R, Stieger P, Mandel T, Baltensperger K, Bennett M, Traas J, Friml J, Kuhlemeier C (2003a) Regulation of phyllotaxis by polar auxin transport. Nature 426:255–260

    CAS  PubMed  Google Scholar 

  • Reinhardt D, Frenz M, Mandel T, Kuhlemeier C (2003b) Microsurgical and laser ablation analysis of interactions between the zones and layers of the tomato shoot apical meristem. Development 130:4073–4083

    CAS  PubMed  Google Scholar 

  • Richter GL, Monshausen GB, Krol A, Gilroy S (2009) Mechanical stimuli modulate lateral root organogenesis. Plant Physiol 151:1855–1866

    CAS  PubMed Central  PubMed  Google Scholar 

  • Robinson DG, Preston RD (1972) Plasmalemma structure in relation to microfibril biosynthesis in Oocystis. Planta 104:234–246

    CAS  PubMed  Google Scholar 

  • Sachs J (1875) Text-book of botany, morphological and physiological. Clarendon, Oxford

    Google Scholar 

  • Sachs J (1882) Vorlesungen über Pflanzen-Physiologie. Verlag W Engelmann, Leipzig

    Google Scholar 

  • Sachs T (1981) The control of the patterned differentiation of vascular tissues. Adv Bot Res 9:151–262

    Google Scholar 

  • Sack FD, Suyemoto MM, Leopold AC (1986) Amyloplast sedimentation and organelle saltation in living corn columella cells. Am J Bot 73:1692–1698

    CAS  PubMed  Google Scholar 

  • Sagawa Y, Mehlquist GAL (1957) The mechanism responsible for some X-ray induced changes in flower color of the carnation, Dianthus caryophyllus. Am J Bot 44:397–403

    Google Scholar 

  • Sattelmacher B, Marschner H, Kuhne R (1990) Effects of the temperature of the rooting zone on the growth and development of roots of potato (Solanum tuberosum). Ann Bot 65:27–36

    Google Scholar 

  • Scarpella E, Marcos D, Berleth T (2006) Control of leaf vascular patterning by polar auxin transport. Genes Dev 20:1015–1027

    CAS  PubMed Central  PubMed  Google Scholar 

  • Selker JML, Steucek GL, Green PB (1992) Biophysical mechanisms for morphogenetic progressions at the shoot apex. Dev Biol 153:29–43

    CAS  PubMed  Google Scholar 

  • Singer SJ, Nicolson GL (1972) The fluid mosaic model of the structure of cell membranes. Science 175:720–731

    CAS  PubMed  Google Scholar 

  • Snow M, Snow R (1932) Experiments on phyllotaxis. I. The effect of isolating a primordium Philos. Trans R Soc Lon B 221:1–43

    Google Scholar 

  • Snow M, Snow R (1947) On the determination of leaves. New Phytol 46:5–19

    Google Scholar 

  • Snow M, Snow R (1951) On the question of tissue tensions in stem apices. New Phytol 50:184–185

    Google Scholar 

  • Stewart RN, Dermen H (1975) Flexibility in ontogeny as shown by the contribution of the shoot apical layers to leaves of periclinal chimeras. Am J Bot 62:935–947

    Google Scholar 

  • Sugimoto K, Himmelspach R, Williamson RE, Wasteneys GO (2003) Mutation or drug-dependent microtubule disruption causes radial swelling without altering parallel cellulose microfibril deposition in Arabidopsis root cells. Plant Cell 15:1414–1429

    CAS  PubMed Central  PubMed  Google Scholar 

  • Sugimoto K, Jiao Y, Meyerowitz EM (2010) Arabidopsis regeneration from multiple tissues occurs via a root development pathway. Dev Cell 18:463–471

    CAS  PubMed  Google Scholar 

  • Szymkowiak EJ, Sussex IM (1996) What chimeras can tell us about plant development. Annu Rev Plant Physiol Plant Mol Biol 47:351–376

    PubMed  Google Scholar 

  • Thompson DW (1917) On growth and form. Cambridge University Press, Cambridge

    Google Scholar 

  • Toyota M, Furuichi T, Sokabe M, Tatsumi H (2013) Analyses of a gravistimulation-specific Ca2+ signature in Arabidopsis using parabolic flights. Plant Physiol 163:543–554

    CAS  PubMed Central  PubMed  Google Scholar 

  • Traas J (2013) Phyllotaxis Development 140:249–253

    CAS  Google Scholar 

  • Traas J, Bellini C, Nacry P, Kronenberger J, Bouchez D, Caboche M (1995) Normal differentiation patterns in plants lacking microtubular preprophase bands. Nature 375:676–677

    CAS  Google Scholar 

  • Uyttewaal M, Burian A, Alim K, Landrein B, Borowska-Wykret D et al (2012) Mechanical stress acts via katanin to amplify differences in growth rate between adjacent cells in Arabidopsis. Cell 149:439–451

    CAS  PubMed  Google Scholar 

  • Van Berkel K, De Boer RJ, Scheres B, Ten Tusscher K (2013) Polar auxin transport: models and mechanisms. Development 140:2253–2268

    PubMed  Google Scholar 

  • Vandiver R, Goriely A (2008) Tissue tension and axial growth of cylindrical structures in plants and elastic tissues. Europhys Lett 84:58004

    Google Scholar 

  • Vermeer JE, von Wangenheim D, Barberon M, Lee Y, Stelzer EH, Maizel A, Geldner N (2014) A spatial accommodation by neighboring cells is required for organ initiation in Arabidopsis. Science 343:178–183

    CAS  PubMed  Google Scholar 

  • Wymer CL, Wymer SA, Cosgrove DJ, Cyr RJ (1996) Plant cell growth responds to external forces and the response requires intact microtubules. Plant Physiol 110:425–430

    CAS  PubMed Central  PubMed  Google Scholar 

  • Wyrzykowska J, Fleming AJ (2003) Cell division pattern influences gene expression in the shoot apical meristem. Proc Natl Acad Sci USA 100:5561–5566

    CAS  PubMed Central  PubMed  Google Scholar 

  • Wyrzykowska J, Pien S, Shen WH, Fleming AJ (2002) Manipulation of leaf shape by modulation of cell division. Development 129:957–964

    CAS  PubMed  Google Scholar 

  • Yennawar NH, Li L-C, Dudzinski DM, Tabuchi A, Cosgrove DJ (2006) Crystal structure and activities of EXPB1 (Zea m 1), a beta-expansin and group-1 pollen allergen from maize. Proc Natl Acad Sci USA 103:14664–14671

    CAS  PubMed Central  PubMed  Google Scholar 

  • Zhou J, Wang B, Li Y, Wang Y, Zhu L (2007) Responses of chrysanthemum cells to mechanical stimulation require intact microtubules and plasma membrane-cell wall adhesion. J Plant Growth Regul 26:55–68

    Google Scholar 

  • Zonia L, Munnik T (2008) Vesicle trafficking dynamics and visualization of zones of exocytosis and endocytosis in tobacco pollen tubes. J Exp Bot 59:861–873

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrei Lipchinsky .

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Lipchinsky, A. (2015). Morphomechanics of Plants. In: Morphomechanics of Development. Springer, Cham. https://doi.org/10.1007/978-3-319-13990-6_5

Download citation

Publish with us

Policies and ethics