Skip to main content

From Strict Determinism to Self-organization

  • Chapter
  • First Online:
Morphomechanics of Development
  • 639 Accesses

Abstract

We start from reviewing several ubiquitous approaches to morphogenesis and argue that for a more adequate presentation of morphogenesis, they should be replaced by explanatory constructions based upon the self-organization theory (SOT). The first step on this way will be in describing morphogenetic events in terms of the symmetry theory, to distinguish the processes driven either toward increase or toward decrease of the symmetry order and to use Curie principle as a clue. We will show that the only way to combine this principle with experimental data is to conclude that morphogenesis passes via a number of instabilities. The latter, in their turn, point to the domination of nonlinear regimes. Accordingly, we come to the realm of SOT and give a survey of the dynamic modes which it provides. By discussing the physical basis of embryonic self-organization, we focus ourselves on the role of mechanical stresses. We suggest that many (although no all) morphogenetic events can be regarded as retarded relaxations of previously accumulated elastic stresses toward a restricted number of metastable energy wells.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    My friend, American biologist Albert Harris, liked to compare PI with a price politics in non-marked economies: The prices (equivalent to local morphologies or cell types) are appointed ad hoc, without being regulated by any mutual feedbacks.

  2. 2.

    A phase space is a space in which all possible states of a system are represented, with each possible state of the system corresponding to one unique point in the phase space.

References

  • Alberts B, Bray D, Lewis J, Raff M, Roberts K, Watson JD (2003) Molecular biology of the cell. Garland Publishing Inc. New York

    Google Scholar 

  • Baer KE Von (1828) Ueber Entwicklungsgeschichte der Tiere. Beobachtung und Reflexion. ErsterTheil. Konigsberg

    Google Scholar 

  • Ball P (2001) The self-made tapestry. Pattern formation in nature. Oxford University Press, Oxford

    Google Scholar 

  • Blanchard GB, Adams RJ (2011) Measuring the multi-scale integration of mechanical forces during morphogenesis. Curr Opin Genet Dev 21:653–663

    Article  CAS  PubMed  Google Scholar 

  • Cademartiri L, Bishop KJM, Snyder PW, Ozin GA (2012) Using shape for self-assembly. Philos Trans Roy Soc A 370:2824–2847

    Article  CAS  Google Scholar 

  • Capra F (1996) The web of life. A new scientific understanding of living systems. Anchor Books, New York

    Google Scholar 

  • Curie P (1894) De symmetriedans les phenomenes physique: symmetrieders champs electriqueetmagnetique. J de Physique Ser 3:393–427

    Google Scholar 

  • De Robertis EM (2009) Spemann’s organizer and the self-regulation of embryonic fields. Mech Dev 126:925–941

    Article  PubMed Central  PubMed  Google Scholar 

  • Diz-Muñoz A, Fletcher DA, Weiner OD (2013) Use the force: membrane tension as an organizer of cell shape and motility. Trends in Cell Biol 23:47–53

    Article  Google Scholar 

  • Driesch H (1921) Philosophie des Organischen. Engelmann, Leipzig

    Google Scholar 

  • Eaton S, Julicher F (2011) Cell flow and tissue polarity patterns. Curr Opin Genet Dev 21:747–752

    Article  CAS  PubMed  Google Scholar 

  • Elsdale T (1972) Pattern formation in fibroblast cultures: an inherently precise morphogenetic process. In Waddington CH (ed) Towards a theoretical biology 4. Essays, Edinburgh University Press, Edinburgh, pp 95–108

    Google Scholar 

  • Frankel J (1989) Pattern formation. Ciliates studies and models. Oxford University, New York

    Google Scholar 

  • Furusawa C, Kaneko K (2006) Morphogenesis, plasticity and irreversibility. Int J Dev Biol 50:223–232

    Article  PubMed  Google Scholar 

  • Gamba A, Nicodemi M, Soriano J, Ott A (2012) Critical behavior and axis defining symmetry breaking in Hydra embryonic development. Phys Rev Lett 108:158103

    Article  PubMed  Google Scholar 

  • Gerhart J (1998) Johannes holtfreter. National Academic Press, National Academy of Sciences, Washington DC, pp 1–22

    Google Scholar 

  • Gilbert S-F (2010) Developmental biology. Sinauer Ass, Sunderland

    Google Scholar 

  • Gordon R (1999) The hierarchical genome and differentiation waves. Novel unification of development, genetics and evolution, V. 1. World Scientific, Singapore

    Google Scholar 

  • Green P, Steele CS, Rennich SC (1996) Phillotactic patterns: a biophysical mechanism for their origin. Ann Bot 77:515–527

    Article  Google Scholar 

  • Gurwitsch A (1930) Die histologischenGrundlagen der Biologie. Gustav Fisher, Jena

    Google Scholar 

  • Harrison RG (1918) Experiments on the development of the forelimb of Ambystoma, a self-differentiating equipotential system. J Exp Zool 25:413–461

    Article  Google Scholar 

  • Hemmati-Brivanloue A, Melton D (1997) Vertebrate neural induction. Annu Rev Neurosci 20:43–60

    Article  Google Scholar 

  • Holtfreter J (1938) Differenzierungspotenzen isolierter Teile der Urodelengastrula. W.Roux’ Arch Bd 138: 657–738

    Google Scholar 

  • Howard J, Grill SW, Bois JS (2011) Turing’s next steps: the mechanochemical basis of morphogenesis. Nat Rev Mol Cell Biol 12:392–398

    Article  PubMed  Google Scholar 

  • Jaffe LF (1969) On the centripetal course of development, the Fucus egg, and self-electrophoresis. Dev Biol Suppl 3:83–111

    Google Scholar 

  • Krinsky VI, Zhabotinsky AM (1981) Autowave structures and the perspectives of their investigations. In: Grechova MT (ed) Autowave processes in diffusional; systems. Gorky, Inst Appl Physics AcadSci USSR: 6–32 (in Russian)

    Google Scholar 

  • Kupiec J-J (2009) The origins of individuals. World Scientific, London

    Book  Google Scholar 

  • Ladoux B, Nicolas A (2012) Physically based principles of cell adhesion mechanosensitivity in tissues. Rep Prog Phys 75:116601 (25 pp)

    Google Scholar 

  • Lawrence PA (1992) The making of a fly. The genetics of animal design. Blackwell Scientific Publications, Hoboken

    Google Scholar 

  • Martynov LA (1982) The role of macroscopic processes in morphogenesis. In: Zotin AI, Presnov EV (eds) Mathematical biology of development. Nauka, Moskva, pp 135–154 (in Russian)

    Google Scholar 

  • Meinhardt H (1982) Models of biological pattern formation. Academic Press, New York

    Google Scholar 

  • Moček, R. (1974) W. Roux–H. Driesch. Zur Geschichte de Entwicklungsphysiologie der Tiere. Jena, Fisher

    Google Scholar 

  • Nicol A, Rappel W-J, Levine H, Loomis WF (1999) Cell-sorting in aggregates of Dictyostelium discoideum. J Cell Sci 112:3923–3929

    CAS  PubMed  Google Scholar 

  • Nieuwkoop PD (1977) Origin and establishment of an embryonic polar axis in amphibian development. Curr Top Dev Biol 11:115–117

    Article  CAS  PubMed  Google Scholar 

  • Petuchov SV (1981) Biomechanics, Bionics and Symmetry. Nauka, Moskva

    Google Scholar 

  • Prigogine I, Stengers I (1984) Order out of Chaos. Bantham Books, USA

    Google Scholar 

  • Schwarz US, Gardel ML (2012) United we stand—integrating the actin cytoskeleton and cell-matrix adhesions in cellular mechanotransduction. J Cell Sci 125:1–10

    Article  Google Scholar 

  • Shubnikov AV, Kopzik VA (1972) Symmetry in science and art. Nauka, Moskva

    Google Scholar 

  • Spemann H (1936) ExperimentelleBeitragezueinerTheorie der Entwicklung. Fisher, Jena

    Google Scholar 

  • Spemann H, Mangold H (1924) Uber induktion von embryonalanlagen durch implantation artfremder organizatoren. Arch mikrosk Anat Entwmech 100:599–638

    Google Scholar 

  • Spiegel M, Spiegel ES (1975) The reaggregation of dissociated embryonic sea urchin cells. Am Zool 15:583–606

    Google Scholar 

  • Steinberg MS (1978) Cell-cell recognition in multicellular assembly: levels of specificity. In: Curtis ASG (ed) Cell-cell recognition. Cambridge University Press, Cambridge, pp 25–49

    Google Scholar 

  • Surkova S, Golubkova E, Manu, Panok L, Mamon L, Reinitz J, Samsonova M (2013) Quantitative dynamics and increased variability of segmentation gene expression in the Drosophila Kruppel and Knirps mutants. Dev Biol 376:99–112

    Google Scholar 

  • Svetina S, Zeks B (1991) The mechanical behavior of closed lamellar membranes as a possible physical origin of cell polarity. J Theor Biol 146:115–122

    Article  Google Scholar 

  • Townes PL, Holtfreter J (1955) Directed movements and selective adhesion of embryonic amphibian cells. J Exp Zool 128:53–120

    Article  Google Scholar 

  • Turing AM (1952) The chemical basis of morphogenesis. Philos Trans Roy Soc, B 237:37–72

    Google Scholar 

  • Vladar EK, Antic D, Axelrod JD (2009) Planar cell polarity signaling: the developing cell’s compass. Cold Spring Harb Perspect Biol 1:a002964

    Google Scholar 

  • Waddington CH (1962) New patterns in genetics and development. Columbia University Press, New York

    Google Scholar 

  • Wintz W, Doebereiner HG, Seifert U (1996) Starfish vesicles. Europhys Lett 33:403–408

    Article  CAS  Google Scholar 

  • Wolpert L (1969) Positional information and the spatial pattern of cellular differentiation. J Theor Biol 25:1–47

    Article  CAS  PubMed  Google Scholar 

  • Wolpert L (1996) One hundred years of positional information. Trends Genet 12:359–364

    Article  CAS  PubMed  Google Scholar 

  • Xu J, Van Keymeulen A, Wakida NM, Carlton P, Berns MW, Bourne HR (2007) Polarity reveals intrinsic cell chirality. PNAS 104:9296–9300

    Article  Google Scholar 

  • Zacharov VM (1987) Asymmetry in Animals. Nauka, Moskva

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lev V. Beloussov .

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Beloussov, L.V. (2015). From Strict Determinism to Self-organization. In: Morphomechanics of Development. Springer, Cham. https://doi.org/10.1007/978-3-319-13990-6_1

Download citation

Publish with us

Policies and ethics