Skip to main content

A Robust Feature Matching Method for Robot Localization in a Dynamic Indoor Environment

  • Conference paper
Technologies and Applications of Artificial Intelligence (TAAI 2014)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 8916))

Abstract

In this paper, we report how the feature matching method can be applied to deal with the indoor mobile robot localization problem. We assume that a robot equipped with a laser rangefinder can scan the environment in real time and get the geometry features, and then the robot can match these features with those collected in advance to find the possible locations. This approach would face two difficulties. Since there are locations with similar features, the robot have to move around and do the scan and match several times to make sure the right location. There is another difficult problem, the features might not be fix in real-world dynamic environment, e.g. people might be walking through, furniture might be shifted; therefore, a robust feature matching method is needed for dynamic environment. This paper describes an efficient method using omni-directional feature grouping to improve the feature matching method for robot localization. With the laser rangefinder, a robot finds the 360 degree coverage information. Omni-directional feature grouping has the advantage of dividing all the features of a hypothetical position through different directions to generate multiple sets of environmental features. The method can reduce the affection of moving objects in a dynamic environment. Experimental results show that our method improve the accuracy rate and has low average errors.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Arras, K.O., Castellanos, J.A., Schilt, M., Siegwart, R.: Feature-based multi-hypothesis localization and tracking using geometric constraints. Robotics and Autonomous System 44(1), 41–53 (2003)

    Article  Google Scholar 

  2. Bailey, T., Durrant-Whyte, H.: Simultaneous localization and mapping SLAM: part II. IEEE Robotics and Automation Magazine 13(3), 108–117 (2006)

    Article  Google Scholar 

  3. Cortes, B.B., Salvi, J., Cufí, X.: Long-term mapping and localization using feature stability histograms. Robotics and Autonomous Systems 61(12), 1539–1558 (2013)

    Article  Google Scholar 

  4. Corregedor, A.R., Meyer, J., Du Plessis, F.: Design Principles for 2D Local Mapping Using a Laser Rangefinder. In: IEEE Africon 2011 - The Falls Resort and Conference Centre, September 13-15, pp. 1–6 (2011)

    Google Scholar 

  5. Falomir, Z., Museros, L., Castelló, V., Gonzalez-Abril, L.: Qualitative distances and qualitative image descriptions for representing indoor scenes in robotics. Pattern Recognition Letters 34(7), 731–743 (2013)

    Article  Google Scholar 

  6. Fox, D., Burgard, W., Thrun, S.: Markov Localization for Mobile Robots in Dynamic Environments. Journal of Artificial Intelligence Research 11, 391–427 (1999)

    MATH  Google Scholar 

  7. Hanzel, J., Kl’účik, M., Jurišica, L., Vitko, A.: Rangefinder models for mobile robots. Procedia Engineering 48, 189–198 (2012)

    Article  Google Scholar 

  8. José, N., Tardós, J.D.: Data association in stochastic mapping using the joint compatibility test. IEEE Transactions on Robotics and Automation 17(6), 890–897 (2001)

    Article  Google Scholar 

  9. Kar, A.: Linear-time robot localization and pose tracking using matching signatures. Robotics and Autonomous Systems 60(2), 296–308 (2012)

    Article  Google Scholar 

  10. Lingemann, K., Nüchter, A., Hertzberg, J., Surmann, H.: High-speed laser localization for mobile robots. Robotics and Autonomous Systems 51(4), 275–296 (2005)

    Article  Google Scholar 

  11. Li, Y., Li, S., Ge, Y.: A biologically inspired solution to simultaneous localization and consistent mapping in dynamic environments. Neurocomputing 104, 170–179 (2013)

    Article  Google Scholar 

  12. Gerstmayr-Hillen, L., et al.: Dense topological maps and partial pose estimation for visual control of an autonomous cleaning robot. Robotics and Autonomous Systems 61(5), 497–516 (2013)

    Article  Google Scholar 

  13. Luis, M., Garrido, S., Muñoz, M.L.: Evolutionary filter for robust mobile robot global localization. Robotics and Autonomous Systems 54(7), 590–600 (2006)

    Article  Google Scholar 

  14. Martín, F., Moreno, L., Blanco, D., Muñoz, M.L.: Kullback–Leibler divergence-based global localization for mobile robots. Robotics and Autonomous Systems 62(2), 120–130 (2014)

    Article  Google Scholar 

  15. Mirkhani, M., Forsati, R., Shahri, A.M., Moayedikia, A.: A novel efficient algorithm for mobile robot localization. Robotics and Autonomous Systems 61(9), 920–931 (2013)

    Article  Google Scholar 

  16. Patrick, R., Angermann, M., Krach, B.: Simultaneous localization and mapping for pedestrians using only foot-mounted inertial sensors. In: Proceedings of the 11th International Conference on Ubiquitous Computing, pp. 93–96. ACM (2009)

    Google Scholar 

  17. Pinto, M., Sobreira, H., Paulo Moreira, A., Mendonça, H., Matos, A.: Self-localisation of indoor mobile robots using multi-hypotheses and a matching algorithm. Mechatronics 23(6), 727–737 (2013)

    Article  Google Scholar 

  18. Sekmen, A., Challa, P.: Assessment of adaptive human–robot interactions. Knowledge-Based Systems 42, 49–59 (2013)

    Article  Google Scholar 

  19. Siepmann, F., Ziegler, L., Kortkamp, M., Wachsmuth, S.: Deploying a modeling framework for reusable robot behavior to enable informed strategies for domestic service robots. Robotics and Autonomous Systems 62(5), 619–631 (2014)

    Article  Google Scholar 

  20. Stephen, F., Pasula, H., Fox, D.: Voronoi Random Fields: Extracting Topological Structure of Indoor Environments via Place Labeling. IJCAI 7, 2109–2114 (2007)

    Google Scholar 

  21. Weiß, G., Wetzler, C., von Puttkamer, E.: Keeping Track of Position and Orientation of Moving Indoor Systems by Correlation of Range-Finder Scans. In: Proceedings of the IEEE/RSJ/GI International Conference on Intelligent Robots and Systems 94 Advanced Robotic Systems and the Real World, IROS 1994, pp. 595–601. IEEE (September 1994)

    Google Scholar 

  22. Durrant-Whyte, H., Bailey, T.: Simultaneous localization and mapping: part I. IEEE Robotics and Automation Magazine 13(2), 99–110 (2006)

    Article  Google Scholar 

  23. Zhao, Y., Chen, X.: Prediction-based geometric feature extraction for 2D laser scanner. Robotics and Autonomous Systems 59(6), 402–409 (2011)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Tsou, TY., Wu, SH. (2014). A Robust Feature Matching Method for Robot Localization in a Dynamic Indoor Environment. In: Cheng, SM., Day, MY. (eds) Technologies and Applications of Artificial Intelligence. TAAI 2014. Lecture Notes in Computer Science(), vol 8916. Springer, Cham. https://doi.org/10.1007/978-3-319-13987-6_33

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-13987-6_33

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-13986-9

  • Online ISBN: 978-3-319-13987-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics