Skip to main content

Leishmaniasis

  • Chapter
  • First Online:
Arthropod Borne Diseases

Abstract

Leishmaniases are diseases caused by several species of Leishmania protozoa and occur in all continents, except Antarctica. Almost 20 species have been isolated from humans, and they may cause cutaneous, mucocutaneous, and visceral forms of the disease. The severity of the infection depends on the protozoon species and strain, host immune response, nutritional status, and, to a lesser extent, sand fly species involved in the transmission. Depending on the parasite tropism, amastigotes invade macrophages in the skin, mucosa, and internal organs, mostly the spleen, liver, and bone marrow, causing their depletion. Clinical presentations may vary from localized skin lesions to generalized disease, with fever, weight loss, enlargement of the spleen and liver, anemia, leucopenia, and thrombocytopenia. Transmission primarily occurs by the bites of sand flies, the only proven biological vectors of Leishmania parasites. Secondary transmission routes have been demonstrated in both humans and dogs, including congenital transmission. The epidemiology of leishmaniases is complex, as it involves different vector, host, and parasite species, living in a constantly changing environment. Disease diagnosis and treatment are still complicated, particularly in developing countries. More effective control strategies are urgently needed to reduce the burden of leishmaniases in endemic areas. Meanwhile, education and better living conditions for people residing in risk areas are key to controlling this group of diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Personal observation (CBM)

  2. 2.

    Special abbreviations (Marcondes 2007), similar to those for mosquitoes, were utilized for sand fly genera.

  3. 3.

    Lutzomyia lato sensu, as proposed by D. Lewis and revised by Young and Duncan, and not s.s. as utilized in this chapter

  4. 4.

    Phlebotomus mascitti, considered a poor vector, has been found in Austria.

  5. 5.

    This concept of the Middle East is as arbitrary as the more usual, proposed by the American naval officer and historian Alfred Thayer Mahan in 1902, which included lands from Arabia to India.

  6. 6.

    When applied in the general environment, imidacloprid is very toxic for bees and bumblebees, (Van der Sluijs et al. 2013), but since it has very high LD50 for mammals (2000 mg/kg for dermal exposition in rats and 450 and 131 mg/kg for ingestion, respectively, for rats and mice) (Hovda and Hooser 2002), the application on dogs would not probably be dangerous (CBM).

References

  • Alvar J, Vélez ID, Bern C et al (2012) Leishmaniasis worldwide and global estimates of its incidence. Plos One 7, e35671

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bacellar O, Lessa H, Schriefer A et al (2002) Up-regulation of Th1-type responses in mucosal leishmaniasis patients. Infect Immun 70:6734. doi:10.1128/IAI.70.12.6734-6740.2002

  • Badirzadeh A, Moheball M, Ghasemian M et al (2013) Cutaneous and post kala-azar dermal leishmaniasis caused by Leishmania infantum in endemic areas of visceral leishmaniasis, northwestern Iran 2002–2011: a case series. Pathog Global Hlth 107:104–197

    Google Scholar 

  • Blum J, Desjeux P, Schwartz E et al (2004) Treatment of cutaneous leishmaniasis among travellers. J Antimicrob Chemother 53:158–166

    Article  CAS  PubMed  Google Scholar 

  • Cantacessi C, Dantas-Torres F, Nolan MJ et al (2015) The past, present, and future of Leishmania genomics and transcriptomics. Trends Parasitol 31:100–108

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cardo LJ (2006) Leishmania: risk to the blood supply. Transfusion 46:1641–1645

    Article  PubMed  Google Scholar 

  • Chappuis F, Sundar S, Hailu A et al (2007) Visceral leishmaniasis: what are the needs for diagnosis, treatment and control? Nat Rev Microbiol 5:873–882

    Article  CAS  PubMed  Google Scholar 

  • Cota GF, Sousa MR, Mendonça ALP et al (2014) Leishmania-HIV co-infection: clinical presentation and outcomes in an urban area in Brazil. PLoS Negl Trop Dis 8, e2816. doi:10.1371/journal.pntd.0002816

    Article  PubMed  PubMed Central  Google Scholar 

  • Cota GC, Sousa MR, Rabello A (2011) Predictors of visceral leishmaniasis relapse in HIV infected patients: a systematic review. PLoS Negl Trop Dis 5, e1153. doi:10.1371/journal.pntd.0001153.g001

    Article  PubMed  PubMed Central  Google Scholar 

  • Dantas-Torres F (2007) The role of dogs as reservoirs of Leishmania parasites, with emphasis on Leishmania (Leishmania) infantum and Leishmania (Viannia) braziliensis. Vet Parasitol 149:139–146

    Article  PubMed  Google Scholar 

  • Dantas-Torres F (2009) Canine leishmaniosis in South America. Paras Vect 2 (Suppl I). doi:10.1186/1756-3305-2-S1-S1

  • Desjeux P, Alvar J (2003) Leishmania/HIV co-infections: epidemiology in Europe. Ann Trop Med Parasitol 97(Suppl 1):S3–S15

    Article  Google Scholar 

  • Dye C (1992) Leishmaniasis epidemiology: the theory catches up. Parasitology 104:S7–S18

    Article  PubMed  Google Scholar 

  • El-Hassan AM, Zijlstra EE (2001) Leishmaniasis in Sudan: 2. Mucosal leishmaniasis. Trans R Soc Trop Med Hyg 95(Suppl 1):S1/19–S1/26

    Google Scholar 

  • Figueiró-Filho EA, Duarte G, El-Beitume P et al (2004) Visceral leishmaniasis (kala-azar) and pregnancy. Infect Dis Obstet Gynecol 12:31–40

    Article  PubMed  PubMed Central  Google Scholar 

  • Freitas E, Melo MN, Costa-Val AP et al (2006) Transmission of Leishmania infantum via blood transfusion in dogs: potential for infection and importance of clinical factors. Vet Parasitol 137:159–167

    Article  PubMed  Google Scholar 

  • Gidwani K, Picado A, Rijal S et al (2011) Serological markers of sand fly exposure to evaluate insecticidal nets against visceral leishmaniasis in India and Nepal: a cluster-randomized trial. PLoS Negl Trop Dis 5, e1296

    Article  PubMed  PubMed Central  Google Scholar 

  • Guimarães LH, Machado PRL, Lessa HA et al (2005) Clinical aspects of tegumentary leishmaniasis. Gaz Med Bahia 75:66–74

    Google Scholar 

  • Hinojosa MC, Alvarez DR, Kato H et al (2013) Cutaneous sporotrichoid lesion in a patient from a subtropical region of Ecuador. Enferm Infecc Microbiol Clin. doi:10.1016/j.eimc.2014.02.007

  • Hovda LR, Hooser SB (2002) Toxicology of newer insecticides for use in dogs and cats. Vet Clin North Am Small Anim Pract 23:455–467

    Article  Google Scholar 

  • Kamhawi S (2006) Phlebotomine sand flies and Leishmania parasites: friends or foes? Trends Parasitol 22:439–445

    Article  PubMed  Google Scholar 

  • Killick-Kendrick R (1999) The biology and control of phlebotomine sand flies. Clin Dermatol 17:279–289

    Google Scholar 

  • Kopterides P, Mortzoukou EG, Skopelitis E et al (2007) Aspects of the association between leishmaniasis and malignant disorders. Trans R Soc Trop Med Hyg 101:1181–1189

    Article  PubMed  Google Scholar 

  • Lindoso JA, Cota GF, Cruz AM et al (2014) Visceral leishmaniasis and HIV coinfection in Latin America. PLoS Negl Trop Dis 8, e3136

    Article  PubMed  PubMed Central  Google Scholar 

  • Lindoso JAL, Lima ACS, Cunha MA et al (2015) Diagnosing neglected tropical diseases in HIV coinfection. Hum Parasit Dis 7:11–18. doi:10.4137/HPD.S19569

    Article  Google Scholar 

  • Lukes J, Mauricio IL, Schönian G et al (2007) Evolutionary and geographical history of the Leishmania donovani complex with a revision of current taxonomy. PNAS 104:9375─9380.doi:10.1073_pnas.0703678104

    Google Scholar 

  • Luz KG, Silva VO, Gomes EM et al (1997) Prevalence of anti-Leishmania donovani antibody among Brazilian blood donors and multiply transfused hemodialysis patients. Am J Trop Med Hyg 57:168–171

    CAS  PubMed  Google Scholar 

  • Marcondes CB (2007) A proposal of generic and subgeneric abbreviations for Phlebotomine sandflies (Diptera: Psychodidae: Phlebotominae) of the world. Entomol News 118:351–356

    Article  Google Scholar 

  • Marcondes CB, Costa CHN (2014) Visceral leishmaniasis control in Brazil: time to re-evaluate DDT? Terr Arthr Rev 7:21–39

    Article  Google Scholar 

  • Maroli M, Gradoni L, Oliva G et al (2010) Guidelines for prevention of leishmaniasis in dogs. J Am Vet Med Assoc 236:1200–1206

    Article  CAS  PubMed  Google Scholar 

  • Maroli M, Feliciangeli MD, Bichaud L et al (2013) Phlebotomine sand flies and the spreading of leishmaniases and other diseases of public health concern. Med Vet Entomol 27:123–147

    Article  CAS  PubMed  Google Scholar 

  • Mayrink W, Botelho ACC, Magalhães PA et al (2006) Immunotherapy, immunochemotherapy and chemotherapy for American cutaneous leishmaniasis treatment. Rev Soc Bras Med Trop 39:14–21

    Article  PubMed  Google Scholar 

  • Mignogna MD, Celentano A, Leuci S et al (2014) Mucosal leishmaniasis with primary oral involvement: a case series and a review of the literature. Oral Dis. doi:10.1111/odi.12268

    PubMed  Google Scholar 

  • Minodier P, Noël G, Blanc P et al (2005) Traitement des leishmanioses cutanées de l’adulte e de l’infant. Med Trop 65:487–495Miró G, Gálvez R, Fraile C et al (2011) Infectivity to Phlebotomus perniciosus of dogs naturally parasitized with Leishmania infantum after different treatments. Paras Vectors 4:529

    Google Scholar 

  • Monge-Maillo B, Norman FF, Cruz I et al (2014) Visceral leishmaniasis and HIV coinfection in the Mediterranean region. PLoS Negl Trop Dis. 8(8), e3021. doi:10.1371/journal.pntd.0003021

  • Oliveira-Neto MP, Schubach A, Mattos M et al (2008) Intralesional therapy of American cutaneous leishmaniasis with pentavalent antimony in Rio de Janeiro, Brazil ─ an area of Leishmania (V.) braziliensis. Int J Dermatol 36:463–468

    Article  Google Scholar 

  • Otranto D, Dantas-Torres F (2013) The prevention of canine leishmaniasis and its impact on public health. Trends Parasitol 29:339–345

    Article  PubMed  Google Scholar 

  • Otranto D, Dantas-Torres F, de Caprariis D et al (2013) Prevention of canine leishmaniosis in a hyper-endemic area using a combination of 10% imidacloprid/4.5% flumethrin. PLoS One 8, e56374

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Petersen CA, Barr SC (2009) Canine leishmaniasis in North America: emerging or newly recognized? Vet Clin North Am Small Anim Pract 39:1065–1074

    Article  PubMed  PubMed Central  Google Scholar 

  • Rabello A, Orsini M, Disch J (2003) Leishmania/HIV co-infection in Brazil: an appraisal. Ann Trop Med Parasitol 97(Suppl 1):S18–S28

    Google Scholar 

  • Ready PD (2013) Biology of Phlebotomine sand flies as vectors of disease agents. Annu Rev Entomol 58:227–250

    Article  CAS  PubMed  Google Scholar 

  • Schriefer A, Schriefer ALF, Góes-Neto A et al (2004) Multiclonal Leishmania braziliensis population structure and its clinical implication in a region of endemicity for American tegumentary leishmaniasis. Infect Immun 72:508–514

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Singh S, Sharma U, Mishra J (2011) Post-kala-azar dermal leishmaniasis: recent developments. Int J Dermatol 50:1099–1108

    Article  PubMed  Google Scholar 

  • Singh N, Mishra J, Singh R et al (2013) Animal reservoirs of visceral leishmaniasis in India. J Parasitol 99:64–67

    Article  PubMed  Google Scholar 

  • Solano-Gallego L, Miró G, Koutinas A et al (2011) LeishVet guidelines for the practical management of canine leishmaniosis. Parasit Vectors 4:86, http://www.parasitesandvectors.com/content/4/1/86

  • Teodoro U, Silveira TG, dos Santos DR et al (2003) Influência da reorganização, da limpeza do peridomicílio e a da desinsetização de edificações na densidade populacional de flebotomíneos no Município de Doutor Camargo, Estado do Paraná, Brasil. Cad Saúde Publ 19:1801–1813

    Google Scholar 

  • Van der Sluijs JP, Simon-Delso N, Goulson D et al (2013) Neonicotinoids, bee disorders and the sustainability of pollinator services. Curr Opin Environ Sustain 5:293–305

    Article  Google Scholar 

  • WHO (2010) Towards universal access: scaling up priority HIV/AIDS interventions in the health sector - progress report. WHO, Geneva. Available at: http://www.whoint/hiv/pub/2010progressreport/full_report_enpdf. Accessed in 31 May 2013

  • Zijlstra EE, Musa AM, Khalil EAG et al (2003) Post-kala-azar dermal leishmaniasis. Lancet Infect Dis 3:87–98

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carlos Brisola Marcondes .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Marcondes, C.B., Otranto, D., Dantas-Torres, F. (2017). Leishmaniasis. In: Marcondes, C. (eds) Arthropod Borne Diseases. Springer, Cham. https://doi.org/10.1007/978-3-319-13884-8_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-13884-8_16

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-13883-1

  • Online ISBN: 978-3-319-13884-8

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics