Skip to main content

Graphene/Polymer Nanocomposites as Microwave Absorbers

  • Chapter
  • First Online:
Graphene-Based Polymer Nanocomposites in Electronics

Abstract

A major application identified for graphene/polymer nanocomposites is as electromagnetic (EM) wave absorbers in high frequency electronics which is the backbone of present day communication systems. In this application area, thin and flexible absorbers are essential for ensuring electromagnetic interference (EMI)/EM compatibility standards. Presently, communication modes are primarily mobile in nature and inherently light weight and small in size. In this context, there is a great demand for high performance novel absorbing materials that can offer required solutions. The properties of graphene-filled polymer nanocomposites clearly make them outstanding candidates for microwave absorption. Graphene as a filler is quite unique as it offers the highest surface-to-volume ratio and hence once it is incorporated inside a polymer matrix it offers increased conductive and dielectric loss without a large increase in impedance mismatch . It is possible to disperse graphene in some polymers uniformly and hence their large surface-to-volume ratio becomes advantageous. Once they are well dispersed in the host, the composite can be imagined as a kind of distributed capacitors combining in series and parallel resulting in reduced capacitance but increased dissipation, yielding impedance-matched absorber. Graphene can be functionalized with various functional groups giving an additional degree of freedom to fine-tune its properties. This in turn increases the flexibility in designing novel graphene-based materials. For an absorber, not only its EM response but its mechanical, adhesive , and weatherability characteristics are also important. Since meeting the EM absorption requirement over a range of frequencies by a single material is difficult, the possibility of functionalization of graphene opens up many opportunities and hence graphene/polymer nanocomposites open up scope for a wide spectrum of combinatorial investigations that are able to give solutions for the emerging scenario where in the usage of microwave spectrum is becoming more widespread, rather than not merely confined to the strategic sector as it used to be.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Arthur R Von Hippel, Dielectric Materials and Applications, Artech House, 1995

    Google Scholar 

  2. L. F. Chen, C. K. Ong, C. P. Neo, V. V. Varadan, and Vijay K. Varadan Microwave Electronics: Measurement and Materials Characterization, 2004, Wiley

    Google Scholar 

  3. Paul Dixon, IEEE Microwave magazine, 2005, 6 (2), 74

    Google Scholar 

  4. Y. J. An, K. Nishida, T. Yamamoto, S. Ueda and T. Deguchi, Journal of Ceramic Processing Research, 2008, 9(4), 430

    Google Scholar 

  5. S.-H. Park, P.Theilmann, P. Asbeck, and P. R. Bandaru, The IEEE Transactionson Nanotechnology, 2009, 13, 1

    Google Scholar 

  6. W. B Weir, Proceedings of the IEEE, 1974, 62, 1, 33

    Google Scholar 

  7. M. D. Janezic and J. A. Jargon, IEEE Microwave and Guided Wave Letters, 1999, 9(2), 76

    Google Scholar 

  8. K. Sudheendran, K. C. James Raju, M. Ghanashyam Krishna, and Anil. K Bhatnagar, URSI Proceedings, 2006, ProcGA05/pdf/D06b.4(0873)

    Google Scholar 

  9. D. V. Blackham and R. D. Pollard, IEEE Transactions on Instrumentation and Measurement, 1997, 46(5), 1093

    Google Scholar 

  10. P. F. Goldsmith, “Quasi-Optical Techniques”, Proceedings of The IEEE, 1992, 80, 11

    Google Scholar 

  11. J. Baker-Jarvis, E. J. Vanzura, and W. A. Kissick, IEEE Transactions on Microwave Theory and Technology, 1990, 38, 1096

    Google Scholar 

  12. K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, Science, 2004, 306, 666

    Google Scholar 

  13. A. K. Geim and K. S. Novoselov, Nature Materials, 2007, 6 (3), 183

    Google Scholar 

  14. A. A. Balandin, S. Ghosh, W. Bao, I. Calizo, D. Teweldebrhan, F. Miao, and C. N. Lau, Nano Letters, 2008, 8, 902

    Google Scholar 

  15. K. I. Bolotin K. J. Sikes, Z. Jiang, M. Klima, G. Fudenberg, J. Hone, P. Kim, and H. L. Stormer, Solid State Communications, 2008, 146, 351

    Google Scholar 

  16. M. D. Stoller, S. Park, Y. Zhu, J. An, and R. S. Ruoff, Nano Letters, 2008, 8, 3498

    Google Scholar 

  17. A. K. Geim, Science, 2009, 324, 1530

    Google Scholar 

  18. C. Wang, X. Han, P. Xu, X. Zhang, Y. Du, S. Hu, J. Wang, and X. Wang, Applied Physics Letters, 2011, 98, 072906

    Google Scholar 

  19. F. Qin and C. Brosseau, Applied Physics Letters, 2012, 100, 046101

    Google Scholar 

  20. C. Wang, X. Han, P. Xu, X. Zhang, Y. Du, S. Hu, J. Wang, and X. Wang, Applied Physics Letters, 2012, 100, 046102

    Google Scholar 

  21. R. E. Colin, Foundations of Microwave Engineering (McGraw Hill, NewYork, 1966)

    Google Scholar 

  22. J. Du and H.-M. Cheng,Macromolecular Chemistry and Physics, 2012, 213, 1060

    Google Scholar 

  23. H. Kim, A. A. Abdala, and C. W. Macosko, Macromolecules, 2010, 43, 6515

    Google Scholar 

  24. J. Liang, Y. Wang, Y. Huang, Y. Ma, Z. Liu, J. Cai, C. Zhang, H. Gao, and Y. Chen, Carbon, 2009, 47, 922

    Google Scholar 

  25. Z. Wang, J. Luo, and G.–L. Zhao, AIP Advances, 2014, 4, 0171239

    Google Scholar 

  26. A. Joshi, A. Bajaj, R. Singh, P. S. Alegaonkar, K. Balasubramanian, and S. Datar, Nanotechnology, 2013, 24, 455705

    Google Scholar 

  27. D. V.Kosynkin, A. L. Higginbotham, A. Sinitskit, J. R. Lomeda, A. Dimiev, B. K. Price, and J. M. Tour, Nature, 2009, 458, 872

    Google Scholar 

  28. S. K. Marka, M. Tech. Thesis, University of Hyderabad, 2013

    Google Scholar 

  29. R. N. Kumar, P. Shaikshavali, V. V. S. S. Srikanth, and K. B. S. Rao, AIP Conference Proceedings, 2013, 1538, 262

    Google Scholar 

  30. H.-B. Zhang, Q. Yan, W.-G. Zheng, Z. He, and Z.-Z. Yu, ACS Applied Materials & Interfaces 2011, 3, 918

    Google Scholar 

  31. V. Eswaraiah, V. Sankaranarayanan, and S. Ramaprabhu, Macromolecular Materials and Engineering 2011, 296, 894

    Google Scholar 

  32. G.-S. Wang, X.-J. Zhang, Y.-Z. Wei, S. He, L. Guo, and M.-S. Cao, Journal of Materials Chemistry A, 2013, 1,7031

    Google Scholar 

  33. X.-J. Zhang, G.-S. Wang, Y.-Z. Wei, L. Guo, and M.-S. Cao, Journal of Materials Chemistry A, 2013, 1, 12115

    Google Scholar 

  34. H. Shirakawa, E.J. Louis, A.G. MacDiarmid, C.K. Chiang, and A.J. Heeger, Journal of Chemical Society, Chemical Communications, 1977, 578

    Google Scholar 

  35. S. Geetha, K.K. Satheesh, and D.C. Trivedi, Composites Science and Technology, 2005, 65, 973

    Google Scholar 

  36. C.Y. Lee, H.G. Song, K.S. Jang, E.J. Oh, A.J. Epstein, and J. Joo, Synthetic Metals, 1999, 102, 1346

    Google Scholar 

  37. P. Kathirgamanathan, Journal of Materials Chemistry, 1993, 3, 259

    Google Scholar 

  38. Y.K. Hong, C.Y. Lee, C.K. Jeong, J.H. Sim, K. Kim, J. Joo, M.S. Kim, J.Y. Lee, S.H. Jeong, and S.W. Byun, Current Applied Physics, 2001, 1, 439

    Google Scholar 

  39. P. Kathirgamanathan, Advanced Materials, 1993, 5, 281

    Google Scholar 

  40. X. Bai, Y. Zhai, and Y. Zhang, Journal of Physical Chemistry C, 2011, 115, 11673

    Google Scholar 

  41. B. Yuan, L. Yu, L. Sheng, K An, and X. Zhao, Journal of Physics D: Applied Physics, 2012, 45, 235108

    Google Scholar 

  42. J. H. Du, L. Zhao,Y. Zeng, L. L. Zhang, F. Li, P. F. Liu, and C. Liu, Carbon, 2011,49, 1094

    Google Scholar 

  43. H. Yu, T. Wang, B. Wen, M. Lu, Z. Xu, C. Zhu, Y. Chen, X. Xue, C. Sun, and M. Cao, Journal of Materials Chemistry, 2012, 22, 21679

    Google Scholar 

  44. P. Liu and Y. Huang, Journal of Polymer Research, 2014, 21, 430

    Google Scholar 

  45. D.-X. Yan, P.-G. Ren, H. Pang, Q. Fu, M.-B. Yang, and Z.-M. Li, Journal of Materials Chemistry, 2012, 22, 18772

    Google Scholar 

  46. J. Ling, W. Zhai, W. Feng, B. Shen, J. Zhang, and W. Zheng, ACS Applied Materials & Interfaces, 2013, 5, 2677

    Google Scholar 

  47. T. Chen, F. Deng, J. Zhu, C. Chen, G. Sun, S. Ma, and X. Yang, Journal of Materials Chemistry, 2012, 22, 15190

    Google Scholar 

  48. X. Sun, J. He, G. Li, J. Tang, T. Wang, Y. Guo, and H. Xue, Journal of Materials Chemistry C, 2013, 1, 765

    Google Scholar 

  49. X. Li, H. Yi, J. Zhang, J. Feng, F. Li, D. Xue, H. Zhang, Y. Peng, and N. J. Mellors, Journal of Nanoparticle Research, 2013, 15, 1472

    Google Scholar 

  50. G. Wang, Z. Gao, G. Wan, S. Lin, P. Yang, and Y. Qin, Nano Research 2014, 7(5), 704

    Google Scholar 

  51. M. Fu, Q. Jiao, Y. Zhao, and H. Lia, Journal of Materials Chemistry A, 2014, 2, 735

    Google Scholar 

  52. W.-L. Song, M.-S. Cao, M.-M. Lu, J. Liu, J. Yuan, and L.-Z. Fan, Journal of Materials Chemistry C, 2013, 1, 1846

    Google Scholar 

  53. W.-L. Song, M.-S. Cao, M.-M. Lu, J. Yang, H.-F. Ju, Z.-L. Hou, J. Liu, J. Yuan, and L.-Z. Fan, Nanotechnology, 2013, 24, 115708

    Google Scholar 

  54. K. Singh, A. Ohlan, V.H. Pham, R. Balasubramaniyan, S. Varshney, J. Jang, S.H. Hur, W.M. Choi, M. Kumar, S.K. Dhawan, B.-S. Kong, and J.S. Chung, Nanoscale, 2013, 5, 2411

    Google Scholar 

  55. A.P. Singh, M. Mishra, P. Sambyal, B.K. Gupta, B.P. Singh, A. Chandra, and S.K. Dhawan, Journal of Materials Chemistry A, 2014, 2, 3581

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Vadali V. S. S. Srikanth or K. C. James Raju .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Srikanth, V.V.S.S., Raju, K.C.J. (2015). Graphene/Polymer Nanocomposites as Microwave Absorbers. In: Sadasivuni, K., Ponnamma, D., Kim, J., Thomas, S. (eds) Graphene-Based Polymer Nanocomposites in Electronics. Springer Series on Polymer and Composite Materials. Springer, Cham. https://doi.org/10.1007/978-3-319-13875-6_12

Download citation

Publish with us

Policies and ethics