Skip to main content

Graphene/Polymer Nanocomposites: Role in Electronics

  • Chapter
  • First Online:
Graphene-Based Polymer Nanocomposites in Electronics

Abstract

Discovery of graphene nanolayers has made a big bang in nanotechnology and many industrial innovations have come up as a result. Graphene and its derivatives filled polymers also contribute towards the fabrication of numerous electronic and mechanical devices such as sensors, capacitors , tyres, shields etc. In this regard a detailed survey of this topic has utmost importance mainly focusing on the application side. This chapter is aimed at providing a brief introduction about various graphene nanocomposite systems, its major properties especially relevant in electronics and a few applications. We also discuss the thermal, piezoelectric , optoelectric and actuating properties of graphene polymer nanocomposites in addition to the electromagnetic interference shielding and ferroelectric performances.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Sadasivuni K K, Ponnamma D, Thomas S, Grohens Y (2014) Evolution from graphite to graphene elastomer composites. Progress in Polymer Science 39: 749–780.

    Google Scholar 

  2. Lu C C, Lin Y C, Yeh C H, Huang J C, Chiu P W (2012) High mobility flexible graphene field-effect transistors with self-healing gate dielectrics. ACS Nano 6: 4469-4474.

    Google Scholar 

  3. Szafranek B N, Fiori G, Schall D, Neumaier D, Kurz H (2012) Current saturation and voltage gain in bilayer graphene field effect transistors. Nano Letters12: 1324-1328.

    Google Scholar 

  4. Banks C E, Crossley A, Salter C, Wilkins S J, Compton R G (2006) Carbon nanotubes contain metal impurities which are responsible for the “Electrolysis” seen at some nanotubesmodified electrodes. Angewandte Chemie International Edition 45: 2533-2537.

    Google Scholar 

  5. Liu Z, Liu Q, Huang Y, Ma Y, Yin S, Zhang X, Sun W, Chen Y (2008) Organic photovoltaic devices based on a novel acceptor material: Graphene. Advanced Materials 20: 3924-3930.

    Google Scholar 

  6. Bolotin K I, Sikes K J, Jiang Z, Klima M, Gudenberg G, Hone J, Kim P, Stormer H L (2008) Ultrahigh electron mobility in suspended grapheme. Solid State Communication 146: 351–355.

    Google Scholar 

  7. Zhang Y, Tan Y W, Stormer H L, Kim P (2005) Experimental observation of the quantum Hall effect and Berry’s phase in grapheme. Nature 438: 201–204.

    Google Scholar 

  8. Obradovic B, Kotlyar R, Heinz F, Matagne P, Rakshit T, Giles M D, Stettler M A (2006) Analysis of graphene nanoribbons as a channel material for field-effect transistors, Applied Physics Letters 88: 142102-142104.

    Google Scholar 

  9. Geim A K, Novoselov K S (2007) The Rise of Graphene. Nature Mater 6: 183-191.

    Google Scholar 

  10. Barber P, Balasubramanian S, Anguchamy Y, Gong S, Wibowo A, Gao H, Ploehn H J, Zur Loye H C (2009) Polymer Composite and Nanocomposite Dielectric Materials for Pulse Power Energy Storage. Materials 2: 1697–1733.

    Google Scholar 

  11. Kim J Y, Park S H, Jeong T, Bae M J, Kim Y C, Han I, Yu S (2012) High electroluminescence of the ZnS:Mn nanoparticle/cyanoethyl-resinpolymer/single-walled carbon nanotube composite using the tandem structure. Journal of Materials Chemistry 22: 20158–20162.

    Google Scholar 

  12. Yang S Y, Shin K, Park C E (2005) The Effect of Gate-Dielectric Surface Energy on Pentacene Morphology and Organic Field-Effect Transistor Characteristics. Advanced Functional Materials 15: 1806–1814.

    Google Scholar 

  13. Ponnamma D, Sadasivuni K K, Strankowski M, Moldenaers P, Thomas S, Grohens Y (2013) Interrelated shape memory and Payne effect in polyurethane/graphene oxide nanocomposites. RSC Advances 3: 16068-16079.

    Google Scholar 

  14. Potts J R, Dreyer D R, Bielawski C W, Ruoff R S (2011) Graphene-based polymer nanocomposites. Polymer 52 : 5 – 25, doi:10.1016/j.polymer.2010.11.042.

  15. Sun Y, Shi G (2013) Graphene/Polymer Composites for Energy Applications. Journal of polymer science, Part B: Polymer Physics 51: 231–253.

    Google Scholar 

  16. Das T K, Prusty S (2013) Graphene-Based Polymer Composites and Their Applications. Polymer-Plastics Technology and Engineering 52: 319–331.

    Google Scholar 

  17. Ramanathan T, Abdala A A, Stankovich S, Dikin D A, Herrera-Alonso M, Piner R D, Adamson D H, Schniepp H C, Chen X, Ruoff R S, Nguyen S T, Aksay I A, Prud’homme R K, Brinson L C (2008) Functionalized graphene sheets for polymer nanocomposites. Nature Nanotechnology 3: 327–331.

    Google Scholar 

  18. Bolotin K I, Sikes K J, Jiang Z, Klima M, Fudenberg G, Hone J, Kim P, Stormer H L(2008) Ultrahigh electron mobility in suspended graphene. Solid State Communications 146: 351– 355.

    Google Scholar 

  19. Cai W, Moore A L, Zhu Y, Li X, Chen S, Shi L, Ruoff R S (2010) Thermal Transport in Suspended and Supported Monolayer Graphene Grown by Chemical Vapor Deposition. Nano Letters 10: 1645–1651.

    Google Scholar 

  20. Faugeras C, Faugeras B, Orlita M, Potemski M, Nair R R, Geim A K (2010) Thermal Conductivity of Graphene in Corbino Membrane Geometry. ACS Nano 4: 1889–1892.

    Google Scholar 

  21. Lindsay L, Broido D A, Mingo N (2010) Flexural phonons and thermal transport in grapheme. Physical Review B 82: 115427:1–6.

    Google Scholar 

  22. Hooker C N, Ubbelohde A R, Young D A (1965) Anisotropy of Thermal Conductance in Near-Ideal Graphite. Proceedings of the Royal Society London A 284: 17–31.

    Google Scholar 

  23. Yu A, Ramesh P, Itkis M E, Bekyarova E, Haddon R C (2007) Graphite Nanoplatelet-Epoxy Composite Thermal Interface Materials. Journal of Physical Chemistry C 111: 7565–7569.

    Google Scholar 

  24. Yu A, Ramesh P, Sun X, Bekyarova E, Itkis M E, Haddon R C (2008) Enhanced Thermal Conductivity in a Hybrid Graphite Nanoplatelet – Carbon Nanotube Filler for Epoxy Composites. Advanced Materials 20: 4740–4744.

    Google Scholar 

  25. Ganguli S, Roy A K, Anderson D P (2008) Improved thermal conductivity for chemically functionalized exfoliated graphite/epoxy composites. Carbon 46: 806–817.

    Google Scholar 

  26. Zhao X., Zhang Q, Chen D, Lu P (2010) Enhanced mechanical properties of graphene-based poly(vinyl alcohol)composites. Macromolecules, 43, 2357–2363.

    Google Scholar 

  27. Wu Q, Xu Y, Yao Z, Liu A, Shi G (2010) Supercapacitors based on flexible graphene/polyaniline nanofiber composite films. Acs Nano 4: 1963-1970.

    Google Scholar 

  28. Wang Y, Shi Z, Huang Y, Ma Y, Wang C, Chen M, Chen Y (2009) Supercapacitor devices based on graphene materials. The Journal of Physical Chemistry C113: 13103-13107.

    Google Scholar 

  29. Wang D W, Li F, Zhao J, Ren W, Chen Z G, Tan J, Wu S, Gentle I, Lu G Q, Cheng H M (2009) Fabrication of graphene/polyaniline composite paper via in situ anodic electropolymerization for high-performance flexible electrode. ACS Nano 3: 1745 − 1752.

    Google Scholar 

  30. Wu Q, Xu Y, Yao Z, Liu A, Shi G (2010) Supercapacitors based on flexible graphene/polyaniline nanofiber composite films. ACS Nano 4:1963 − 1970.

    Google Scholar 

  31. Yan J, Wei T, Shao B, Fan Z, Qian W, Zhang M, Wei F (2010) Preparation of a graphene nanosheet/polyaniline composite with high specific capacitance .Carbon 48: 487 − 493.

    Google Scholar 

  32. Guo W, Yin Y X, Xin S, Guo Y G, Wan L (2012) Superior radical polymer cathode material with a two-electron process redox reaction promoted by grapheme. Journal of Energy and Environmental Science 5: 5221 − 5225.

    Google Scholar 

  33. Wang Y, Shi Z, Huang Y, Ma Y, Wang C, Chen M, Chen Y(2009) Super-capacitor devices based on graphene materials. J Phys Chem C 113: 13103 – 13107.

    Google Scholar 

  34. Stoller M D, Park S, Yanwu Z, An J, Ruoff R S(2008) Graphene-based ultracapacitors. Nano Letters 8: 3498 – 3502.

    Google Scholar 

  35. Yoo J J, Balakrishnan K, Huang J, Meunier V, Sumpter B G, Srivastava A, Conway M, Reddy A L M, Yu J, Vajtai R, Ajayan P M(2011) Ultrathin planar graphene supercapacitors. Nano Letters 11: 1423 – 1427.

    Google Scholar 

  36. Zhang Y P, Li H B, Pan L K, Lu T, Sun Z (2009) Capacitive behavior of graphene-ZnO composite film for supercapacitors. J. Electroanal. Chem. 634: 68-71.

    Google Scholar 

  37. Li F H, Song J F, Yang H F, Gan S Y, Zhang Q X, Han D X, Ivaska A, Niu L (2009) One step synthesis of Graphene/ SnO2 nanocomposite and its application in electrochemical super capacitors. Nanotechnology 20 : 455602-1 – 455602-6.

    Google Scholar 

  38. Chen S, Zhu J, Wu X, Han Q, Wang X (2010) Graphene oxide-MnO2 nanocomposites for supercapacitors. ACS Nano 4: 2822-2830.

    Google Scholar 

  39. Paek S M, Yoo E J, Honma I (2009) Enhanced cyclic performance and lithium storage capacity of SnO/graphene nanoporous electrodes with three-diemnsionally delaminated flexible structure. Nano Letters 9: 72-75.

    Google Scholar 

  40. Wang D, Choi D, Li J, Yang Z, Nie Z, Kou R, Hu D, Wang C, Saraf L V, Zhang J, Aksay I A, Liu J (2009) Self-assembled TiO2- graphene hybrid nanostructures for enhanced Li-ion insertion, ACS Nano 3: 907-914.

    Google Scholar 

  41. Xie J, Song W, Zheng Y, Liu S, Zhu T, Cao G, Zhao X (2011) Preparation and Li-storage properties of SnSb/graphene hybrid nanostructure by a facile one-step solvothermal route. International Journal of Smart and Nano Materials 2: 261-271.

    Google Scholar 

  42. Xiao J, Mei D, Li X, Xu W, Wang D, Graff G L, Bennett W D, Nie Z, Saraf L V, Aksay I A, Liu J, Zhang J G (2011) Hierarchically porous graphene as a lithium-air battery electrode. Nano Letters 11: 5071-5078.

    Google Scholar 

  43. Nan W, Shen Y, Ma J (2010) Physical Properties of Composites Near Percolation. Annual Review of Materials Research 40: 131–151.

    Google Scholar 

  44. Kim J Y, Lee W H, Suk J W, Potts J R, Chou H, Kholmanov I N, Piner R D, Lee J, A kinwande D, Ruoff R S(2013) Chlorination of Reduced Graphene Oxide Enhances the Dielectric Constant of Reduced Graphene Oxide/Polymer Composites. Advanced Materials 25: 2308–2313.

    Google Scholar 

  45. Sadasivuni K K, Saiter A, Gautier N, Thomas S, Grohens Y (2013) Effect of molecular interactions on the performance of poly (isobutylene-co-isoprene)/graphene and clay nanocomposites. Colloid Polym Sci 291:1729–1740.

    Google Scholar 

  46. Dang Z M, Zhang Y H, Tjong S C (2004) Dependence of dielectric behavior on the physical property of fillers in the polymer-matrix composites. Synthetic Metals 146: 79–84.

    Google Scholar 

  47. K K, Ponnamma D, Kumar B, Strankowskie M, Cardinaels R, Moldenaers P, ThomasS, Grohens Y (2014) Dielectric properties of modified graphene oxide filled polyurethane nanocomposites and its correlation with rheology. Composite science and technology doi: 10.1016/j.compscitech.2014.08.025.

  48. Kim S, Nah J, Jo I, Shahrjerdi D, Colombo L, Yao Z, Tutuc E,Banerjee S K (2009) Realization of a high mobility dual-gated graphene field-effect transistor with Al2O3 dielectric. Applied Physics Letters 94 : 062107 :1-3.

    Google Scholar 

  49. Lu X, Huang H, Nemchuk N, Ruoff R S (1999) Patterning of highly oriented pyrolytic graphite by oxygen plasma etching. Applied Physics Letters 75: 193-195.

    Google Scholar 

  50. Huitema H E A, Gelinck G H, Putten J B P H V, Kuijk K E, Hart C M, Cantatore E, Herwig P T, Breemen A J J M V, Leeuw M L (2001) Plastic transistors in active-matrix displays. Nature 414 :599.

    Google Scholar 

  51. Klauk H, Zschieschang U, Pflaum J, Halik M (2007) Ultralow-power organic complementary circuits. Nature 445: 745-748.

    Google Scholar 

  52. Jin S H, Kim J W, Lee C A, Park B -G, Lee J D (2004) Surface-State Modification of OTFT Gate Insulators by Using a Dilute PMMA Solution. J. Korean Phys. Soc. 44:185-189.

    Google Scholar 

  53. Ihm K, Lim J T, Lee K J, Kwon J W, Kang T H, Chung S, Bae S, Kim J H, Hong B H, Yeom G Y(2010) Number of graphene layers as a modulator of the open-circuit voltage of graphene-based solar cell. Applied Physics Letters 97: 0321133.

    Google Scholar 

  54. Kim B J, Jang H, Lee S K, Hong B H, Ahn J H, Cho J H(2010) High-per-formance flexible graphene field effect transistors with ion gel gate dielectrics. Nano Letters 10: 3464 – 3466.

    Google Scholar 

  55. Wu J, Agrawal M, Becerril HA, Bao Z, Liu Z, Chen Y, Peumans P (2010) Organic light-emitting diodes on solution-processed graphene transparent electrodes. ACS Nano 4: 43-48.

    Google Scholar 

  56. Chang H, Wang G, Yang A, Tao X, Liu X, Shen Y, Zheng Z(2010) A transparent, flexible, low-temperature, and solution-processible graphene composite electrode. Advanced Functional Materials 20: 2893–2902.

    Google Scholar 

  57. Wang Y, Tong S W, Xu X F, Ozyilmaz B, Loh K P (2011) Interface engineering of layer-by-layer stacked graphene anodes for high-performance organic solar cells. Advanced Materials 23: 1514-1518.

    Google Scholar 

  58. Bae S, Kim H, Lee Y, Xu X, Park JS, Zheng Y, Balakrishnan J, Lei T, Ri Kim H, Song YI, Kim YJ, Kim KS, Ozyilmaz B, Ahn JH, Hong BH, Iijima S (2010) Roll-to-roll production of 30-inch gra-phene films for transparent electrodes. Nature Nanotechnol 5: 574-578.

    Google Scholar 

  59. Kim K S, Zhao Y, Jang H, Lee S Y, Kim J M, Kim K S, Ahn J H, Kim P, Choi J Y, Hong B H (2009) Large-scale pattern groth of graphene films for stretchable transparent electrodes. Nature 457: 706-710.

    Google Scholar 

  60. Kang J, Hwang S, Kim J H, Kim M H, Ryu J, Seo S J, Hong B H, Kim M K, Choi J B (2012) Efficient Transfer of Large-Area Graphene Films onto Rigid Substrates by Hot Pressing. ACS Nano 6 : 5360-5365.

    Google Scholar 

  61. Lovinger A J (1981) Crystallization of the β phase of poly(vinylidene fluoride) from the melt. Polymer 22: 412-413.

    Google Scholar 

  62. Sadasivuni K K, Castro M, Saiter A, Delbreilh L, Feller J F, Thomas S, Grohens Y Development of poly(isobutylene-co-isoprene)/reduced graphene oxide Nanocomposites for barrier, dielectric and sensing applications. Materials Letters 96: 109–112.

    Google Scholar 

  63. Thompson B C, Fréchet J M J (2008) Polymer-Fullerene Composite Solar Cells. Angew. Chem. Int. Ed. 47: 58-77.

    Google Scholar 

  64. Lu S X, Panchapakesan B (2006) Nanotube micro-optomechanical actuators. Appl Phys Lett. 88: 253107.

    Google Scholar 

  65. Lu S X, Liu Y, Shao N, Panchapakesan B (2007) Nanotube micro-opto-mechanical systems. Nanotechnology 18: 065501.

    Google Scholar 

  66. Loomis J, King B, Burkhead T, Xu P, Bessler N, Terentjev E, Panchapakesan B (2012) Graphene-nanoplatelet-based photomechanical actuators. Nanotechnology 23: 045501.

    Google Scholar 

  67. Loomis J, King B, Panchapakesan B (2012) Layer dependent mechanical responsesof graphene composites to near-infrared light. Appl Phys Lett. 100: 072108.

    Google Scholar 

  68. Loomis J, Panchapakesan B (2012) Dimensional dependence of photomechanicalresponse in carbon nanostructure composites: a case for carbon-based mixeddimensionalsystems. Nanotechnology 23: 215501.

    Google Scholar 

  69. Stankovich S, Piner R D, Nguyen S T, Ruoff R S (2006) Synthesis and exfoliation of isocyanate-treated graphene oxide nanoplatelets. Carbon 44: 3342-3347.

    Google Scholar 

  70. Rogers G W, Liu J Z (2011) Graphene actuators: quantum-mechanical and electrostatic double-layer effects. Journal of the American Chemical Society 133: 10858 – 10863.

    Google Scholar 

  71. Zhu S E, Shabani R, Rho J, Kim Y, Hong B H, Ahn J H, Cho H J (2011). Graphene-based bimorph microactuators. Nano Letters 11: 977 – 981.

    Google Scholar 

  72. Shin K Y, Hong J Y, Jang J S (2011) Flexible and transparent graphene films as acoustic actuator electrodes using inkjet printing. Chem. Commun. 47: 8527–8529.

    Google Scholar 

  73. Xie X J, Qu L T, Zhou C, Li Y, Zhu J, Bai H, Shi G Q, Dai L M (2010) An Asymmetrically Surface-Modified Graphene Film Electrochemical Actuator. ACS Nano 4: 6050–6054.

    Google Scholar 

  74. Zhu S E, Shabani R, Rho J, Kim Y, Hong B H, Ahn J H, Cho H J (2011) Graphene-Based Bimorph Microactuators. NanoLett. 11: 977–981.

    Google Scholar 

  75. Liang J J, Huang Y, Oh J Y, Kozlov M, Sui D, Fang S L, Baughman R H, Ma Y F, Chen Y S (2011) Electromechanical Actuators Based on Graphene and Graphene/Fe3O4 Hybrid Paper. Adv. Funct. Mater. 21: 3778–3784.

    Google Scholar 

  76. Shahinpoor M (2003) Ionic polymer–conductor composites as biomimetic sensors, robotic actuators and artificial muscles—a review. Electrochim. Acta 48: 2343-2353.

    Google Scholar 

  77. Song W L, Cao M S, Lu M M, Bi S, Wang C Y, Liu J, Yuan J, Fan L Z(2014) Flexible graphene/polymer composite films in sandwich structures for effective electromagnetic interference shielding. Carbon 66: 6 7 –7 6.

    Google Scholar 

  78. Gelves G A, Al-Saleh M H, Sundararaj U (2011) Highly electrically conductive and high performance EMI shielding nanowire/polymer nanocomposites by miscible mixing and precipitation. J. Mater. Chem. 21: 829–836.

    Google Scholar 

  79. Liang Q, Hsie S A, Wong C P (2012) Low temperature solid state microwave reduction of graphene oxide for transparent electrically conductive coatings on flexible polydimethylsiloxane (PDMS). ChemPhysChem 13: 3700–3706.

    Google Scholar 

  80. Thomassin J M, Jérôme C, Pardoen T, Bailly C, Huynen I, Detrembleur C (2013) Polymer/carbon based composites as electromagnetic interference (EMI) shielding materials. Mater. Sci. Eng. R 74: 211–232.

    Google Scholar 

  81. Kuilla T, Bhadra S, Yao D, Kim N H, Bose S, Lee J H (2010) Recent advances in graphene based polymer composites. Prog. Polym. Sci. 35, 1350–1375.

    Google Scholar 

  82. Li D, Muller M B, Gilje S, Kaner R B, Wallace G G (2008) Processable aqueous dispersions of graphene nanosheets. Nat. Nanotechnol. 3: 101–105.

    Google Scholar 

  83. Lee L J, Zeng C C, Cao X, Han X M, Shen J, Xu G J (2005) Polymer nanocomposite foams. Compos. Sci. Technol. 65: 2344–2363.

    Google Scholar 

  84. Zeng C C, Han X M, Lee L J, Koelling K W, Tomasko D L (2003) Polymer-clay nanocomposites foams prepared using carbon dioxide. Adv. Mater. 15: 1743–1747.

    Google Scholar 

  85. Verdejo R, Barroso-Bujans F, Rodriguez-Perez M A, deSaja J A, Lopez-Manchado M A (2008) Functionalized graphene sheet filled silicone foam nanocomposites. J. Mater. Chem. 18, 2221–2226.

    Google Scholar 

  86. Xu C, Wang X, Zhu J (2008) Graphene metal particle nanocomposites. The Journal of Physical Chemistry C 112: 19841-19845.

    Google Scholar 

  87. Li Y, Tang L, Li J (2009) Preparation and electrochemical performance for methanol oxidation of Pt/graphene nanocomposites. Electrochemistry Communications 11: 846-849. 107.

    Google Scholar 

  88. Pant D, Singh A, Bogaert G V, Gallego Y A, Diels L, Vanbroekhoven K (2011) An introduction to the life cycle assessment (LCA) of bioelectrochemical systems (BES) for sustainable energy and product generation: Relevance and key aspects Renew. Sust. Energ. Rev. 15: 1305–1313.

    Google Scholar 

  89. Sridhar P, Perumal R, Rajalakshmi N, Raja M, Dhathathreyan K S (2001) Humidification studies on polymer electrolyte membrane fuel cell. J. Power Sources 101: 72–78.

    Google Scholar 

  90. Kim J R, Cheng S, Oh S –E, Logan B E (2007) Power Generation Using Different Cation, Anion, and Ultrafiltration Membranes in Microbial Fuel Cells. Environ. Sci. Technol. 41: 1004 − 1009.

    Google Scholar 

  91. Wang J, Wang Y, He D, Wu H, Wang H, Zhou P, Fu M (2012) Influence of Polymer/Fullerene-Graphene Structure on Organic Polymer Solar Devices. Integrated Ferroelectrics: An International Journal. 137: 1-9.

    Google Scholar 

  92. Hong W, Xu Y, Lu G, Li C, Shi G (2008) Transparent graphene/ PEDOT-PSS composite films as counter electrodes of dye-sensitized solar cells. Electrochemistry Communications 10: 1555-1558.

    Google Scholar 

  93. Higashihara T, Matsumoto K, Ueda M (2009) Sulfonated aromatic hydrocarbon polymers as proton exchange membranes for fuel cells. Polymer 50: 5341–5357.

    Google Scholar 

  94. Sen U, Bozkurt A, Ata A (2010) Nafion/poly(1-vinyl-1,2,4-triazole) blends as proton conducting membranes for polymer electrolyte membrane fuel cells. J. Power Sources 195: 7720–7726.

    Google Scholar 

  95. Sopian K, Daud W R W (2006) Challenges and future developments in proton exchange membrane fuel cells. Renewable Energy 31: 719–727.

    Google Scholar 

  96. Dreyer D R, Park S, Bielawski C W, Ruoff R S (2010) The chemistry of graphene oxide. Chem. Soc. Rev. 39: 228–240.

    Google Scholar 

  97. Manoratne C H, Rajapakse R M G, Dissanayake M A K L (2006) Ionic Conductivity of Poly(ethylene oxide) (PEO)-Montmorillonite (MMT) Nanocomposites Prepared by Intercalation from Aqueous Medium. Int. J. Electrochem. Sci. 1: 32–46.

    Google Scholar 

  98. Wei B, Tokash J C, Chen G, Hickner M A, Logan B E (2012) Development and Evaluation of Carbon and Binder Loading in Low-Cost Activated Carbon Cathodes for Air-Cathode Microbial Fuel Cells. RSC Adv. 2: 12751 − 12758.

    Google Scholar 

  99. Tseng C –Y, Ye Y –S, Cheng M –Y, Kao K –Y, Shen W –C, Rick J, Chen J –C, Hwang B –J (2011) Sulfonated Polyimide Proton Exchange Membranes with Graphene Oxide Show Improved Proton Conductivity, Methanol Crossover Impedance, and Mechanical Properties. Adv. Energy Mater. 1: 1220 − 1224.

    Google Scholar 

  100. Liu S, Zeng T H, Hofmann M, Burcombe E, Wei J, Jiang R, Kong J, Chen Y (2011) Antibacterial Activity of Graphite, Graphite Oxide, Graphene Oxide, and Reduced Graphene Oxide: Membrane and Oxidative Stress. ACS Nano 5: 6971 − 6980.

    Google Scholar 

  101. Vielstich W, Lamm A, Gasteiger H (2003) Handbook of Fuel Cells: Advances in Electrocatalysis, Materials, Diagnostics and Durability, Wiley, New York.

    Google Scholar 

  102. Mayer A C, Scully S R, Hardin B E, Rower M W, McGehee M D (2007) Polymer-based solar cells. Mater. Today 10: 28-33.

    Google Scholar 

  103. Liu J, Qiao Y, Guo C X, Lim S, Song H, Li C M (2012) Graphene/carbon cloth anode for high-performance mediatorless microbial fuel cells. Bioresour Technology 114: 275-280.

    Google Scholar 

  104. Yong Y C, Dong X C, Chan-Park M B, Song H, Chen P (20120 Macroporous and monolithic anode based on polyaniline hybridized three-dimensional graphene for high performance microbial fuel cells. ACS Nano 6: 2394-2400.

    Google Scholar 

  105. Kalathil S, Lee J, Cho M H (2013) Gold Nanoparticles Produced in Situ Mediate Bioelectricity and Hydrogen Production in a Microbial Fuel Cell by Quantized Capacitance Charging. ChemSusChem 6: 246 − 250.

    Google Scholar 

  106. Oh S T, Kim J R, Premier G C, Lee T H, Kim C, Sloan W T (2010) Sustainable Wastewater Treatment: How Might Microbial Fuel Cells Contribute. Biotechnol. Adv. 28: 871 − 881.

    Google Scholar 

  107. Ayyaru S, Letchoumanane P, Dharmalingam S, Stanislaus A R (2012) Performance of Sulfonated Polystyrene − Ethylene − Butylene − Polystyrene Membrane in Microbial Fuel Cell for bioelectricity production. J. Power Sources 217: 204-208.

    Google Scholar 

  108. Li W –W, Sheng G –P, Liu X –W, Yu H –Q (2011) Recent Advancesin the Separators for Microbial Fuel Cells. Bioresour. Technol. 102: 244 − 252.

    Google Scholar 

  109. Cropper M A, Geiger S, Jollie D (2004) Fuel Cells: A Survey of Current Developments. J. Power Sources 131: 57 − 61.

    Google Scholar 

  110. Tang C W (1986) Two-layer organic photovoltaic cell. Appl. Phys. Lett. 48: 183.

    Google Scholar 

  111. Alam M M, Jenekhe S A (2004) Efficient Solar Cells from Layered Nanostructures of Donor and Acceptor Conjugated Polymers. Chem. Mater. 16: 4647-4656.

    Google Scholar 

  112. Kietzke T, Horhold H H, Neher D (2005) Efficient Polymer Solar Cells Based on M3EH − PPV. Chem. Mater. 17: 6532-6537.

    Google Scholar 

  113. Dittmer J J, Lazzaroni R, Leclere P, Moretti P, Granstrom M, Petritsch K, Marseglia E A, Friend R H, Bredas J L, Rost H, Holmes A B (2000) Crystal network formation in organic solar cells. Sol. Energy Mater. Sol. Cells 61: 53-61.

    Google Scholar 

  114. Eda G, Lin Y Y, Miller S, Chen C W, Su W F, Chhowalla M (2008) Transparent and conducting electrodes for organic electronics from reduced graphene oxide. Appl. Phys. Lett. 92: 233305.

    Google Scholar 

  115. Wang X, Zhi L J, Tsao N, Tomovic Ž, Li J L, Müllen K. (2008) Transparent carbon films as electrodes in organic solar cells. Angew. Chem.-Int. Edit. 47:2990–2992.

    Google Scholar 

  116. Becerril H A, Mao J, Liu Z, Stoltenberg R M, Bao Z, Chen Y (2008) Evaluation of solution-processed reduced graphene oxide films as transparent conductors. ACS Nano 2:463–470.

    Google Scholar 

  117. Sariciftci N S, Smilowitz L, Heeger A J, Wedl F (1992) Photoinduced electron transfer from a conducting polymer to buck minster fullerene. Science 258: 1474–1476.

    Google Scholar 

  118. Gao Y, Yip H -L, Chen K -S, O’Malley K M, Acton O, Sun Y, Ting G, Chen H, Jen A K Y (2011) Surface doping of conjugated polymers by graphene oxide and its application for organic electronic devices. Advanced Materials, 23: 1903–1908.

    Google Scholar 

  119. Ryu M S, Jang J (2011) Effect of solution processed graphene oxide/nickel oxide bi-layer on cell performance of bulk-hetero junction organic photovoltaic. Solar Energy Materials and Solar Cells, 95: 2893–2896.

    Google Scholar 

  120. Yun J -M, Yeo J -S, Kim J, Jeong H -G, Kim D -Y, Noh Y -J, Kim S -S, Ku B -Ch, Na S –I (2011) Solution-processable reduced graphene oxide as a novel alternative to PEDOT:PSS hole transport layers for highly efficient and stable polymer solar cells. Advanced Materials, 23: 4923–4928.

    Google Scholar 

  121. Schniepp H C, Li J -L, McAllister M J, Sai H, Herrera-Alonso M, Adamson D H, Prud’homme R K, Car R, Saville D A, Aksay I A (2006) Functionalized single graphene sheets derived from splitting graphite oxide. The Journal of Physical Chemistry B, 110: 8535–8539.

    Google Scholar 

  122. Hsu C L, Lin C T, Huang J H, Chu C W, Wei K H, Li L J (2012) Layer-by-Layer Graphene/ TCNQ Stacked Films as Conducting Anodes for Organic Solar Cells. ACS Nano 6 : 5031-5039.

    Google Scholar 

  123. Muhlbacher D, Scharber M, Morana M, Zhu Z, Waller D, Gaudiana R, Brabec C (2006) High photovoltaic performance of a low-bandgap polymer. Advanced Materials 18: 2884–2889.

    Google Scholar 

  124. Folgueras L D C, Nohara E L, Faez R, Rezende M C (2007) Dielec- tric microwave absorbing material processed by impregnation of carbon fiber fabric with polyaniline. Materials Research 10: 95–99.

    Google Scholar 

  125. Xu P, Han X J, Wang C, Zhou D H, Lv Z S, Wen A H, Wang X H, Zhang B (2008) Synthesis of Electromagnetic Functionalized Nickel/Polypyrrole Core/Shell Composites. J. Phys. Chem. B 112: 10443 − 10448.

    Google Scholar 

  126. Yan L G, Wang J B, Han X H, Ren Y, Liu Q F, Li F S (2010) Enhanced microwave absorption of Fe nanoflakes after coating with SiO2 nanoshell. Nanotechnology 21: 095708.

    Google Scholar 

  127. Zhu W M, Wang L, Zhao R, Ren J W, Lu G Z, Wang Y Q (2011) Electromagnetic and microwave-absorbing properties of magnetic nickel ferrite nanocrystals. Nanoscale 3: 2862 − 2864.

    Google Scholar 

  128. Wang C, Han X J, Zhang X L, Hu S R, Zhang T, Wang J Y, Du Y C, Wang X H, Xu P (2010) Controlled Synthesis and Morphology-Dependent Electromagnetic Properties of Hierarchical Cobalt Assemblies. J. Phys. Chem. C 114: 14826 − 14830.

    Google Scholar 

  129. Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V, Firsov A A (2004) Electric Field Effect in Atomically Thin Carbon Films. Science 306: 666 − 669.

    Google Scholar 

  130. Sun G B, Dong B X, Cao M H, Wei B Q, Hu C W (2011) Hierarchical Dendrite-Like Magnetic Materials of Fe3O4, γ-Fe2O3, and Fe with High Performance of Microwave Absorption. Chem. Mater. 23: 1587 − 1593.

    Google Scholar 

  131. Liu J W, Che R C, Chen H J, Zhang F, Xia F, Wu Q S, Wang M (2012) Microwave Absorption Enhancement of Multifunctional Composite Microspheres with Spinel Fe3O4 Cores and Anatase TiO2 Shells. Small 8: 1214 − 1221.

    Google Scholar 

  132. Tong G X, Hu Q, Wu W H, Li W, Qian H S, Liang Y J (2012) Submicrometer-sized NiO octahedra: facile one-pot solid synthesis, formation mechanism, and chemical conversion into Ni octahedra with excellent microwave-absorbing properties. Mater. Chem. 22: 17494 − 17504.

    Google Scholar 

  133. Xu H L, Bi H, Yang R B (2012) Enhanced microwave absorption property of bowl-like Fe3O4 hollow spheres/reduced graphene oxide composites. J. Appl. Phys. 111: 07A522.

    Google Scholar 

  134. Sun X, He J P, Li G X, Tang J, Wang T, Guo Y X, Xue H R (2013) Laminated magnetic graphene with enhanced electromagnetic wave absorption properties. J. Mater. Chem. C 1: 765 − 777.

    Google Scholar 

  135. Ren Y L, Wu H Y, Lu M M, Chen Y J, Zhu C L, Gao P, Cao M S, Li C Y, Ouyang Q Y (2012) Quaternary Nanocomposites Consisting of Graphene, Fe3O4@Fe Core@Shell, and ZnO Nanoparticles: Synthesis and Excellent Electromagnetic Absorption Properties. ACS Appl. Mater. Interfaces 4: 6436 − 6442.

    Google Scholar 

  136. Wei T Y, Chen C H, Chang K H, Lu S Y, Hu C C (2009) Cobalt Oxide Aerogels of Ideal Supercapacitive Properties Prepared with an Epoxide Synthetic Route. Chem. Mater. 21: 3228 − 3233.

    Google Scholar 

  137. Chen K Y, Xiang C, Li L C, Qian H S, Xiao Q S, Xu F J (2012) A novel ternary composite: fabrication, performance and application of expanded graphite/polyaniline/ CoFe2O4 ferrite. Mater. Chem. 22: 6449 − 6455.

    Google Scholar 

  138. Singh K, Ohlan A, Pham V H, Balasubramaniyan R, Varshney S, Jang J, Hur S H, Choi W M, Kumar M, Dhawan S K, Kong B S, Chung J S (2013) Nanostructured graphene/Fe3O4 incorporated polyaniline as a high performance shield against electromagnetic pollution. Nanoscale 5: 2411 − 2420.

    Google Scholar 

  139. Liu P B, Huang Y (2013) Synthesis of reduced graphene oxide-conducting polymers-Co3O4 composites and their excellent microwave absorption properties. RSC Adv. 3: 19033 − 19039.

    Google Scholar 

  140. Wang Y, Yang R, Shi Z, Zhang L, Shi D, Wang E, Zhang G(2011) Super- elastic graphene ripples for flexible strain sensors. ACS Nano 5: 3645 -3650.

    Google Scholar 

  141. Schedin F, Geim A K, Morozov S V, Hill E W, Blake P, Katsnelso M I, Novoselov K S (2007) Detection of individual gas molecules adsorbed on graphene. Nature Mater 6: 652-655.

    Google Scholar 

  142. Leenaerts O, Partoens B, Peeters F M (2008) Adsorption of H2O, NH3, CO, NO2 and NO on graphene: A first-principles study. Physical Review B 77: 125416-125421.

    Google Scholar 

  143. Fowler J D, Allen M J, Tung V C, Yang Y, Kaner R B, Weiller B H (2009) Practical chemical sensors from chemically derived grapheme. ACS Nano 3: 301-306.

    Google Scholar 

  144. Sundaram R S, Navarro C G, Balasubramaniam K, Burghard M, Kern K (2008) Electrochemical modification of grapheme. Advanced Materials 20: 3050-3053.

    Google Scholar 

  145. Hu H, Wang X, Xu C, Wang J, Wan L, Zhang M, Shang X (2012) Microwave-Assisted Synthesis of Graphene Nanosheets–Gold Nanocomposites with Enhancing Electrochemical Response. Fullerenes, Nanotubes and Carbon Nanostructures 20: 31-40.

    Google Scholar 

  146. Ghosh A, Late D J, Panchakarla L S, Govindaraj A, Rao C N R (2009) NO2 and humidity sensing characteristics of few-layergraphenes . Journal of Experimental Nanoscience. 4: 313-322.

    Google Scholar 

  147. Deng S, Tjoa V, Fan H M, Tan H R, Sayle D C, Olivo M, Mhaisalkar S, Wei J, Sow C H (2012) Reduced graphene oxide conjugated Cu2O nanowire mesocrystals for highperformance NO2 gas sensor. Journal of the American Chemical Society 134 : 4905-4917.

    Google Scholar 

  148. Lu C H, Yang H H, Zhu C L, Chen X, Chen G N (2009) A graphene platform for sensing biomolecules. Angewandte Chemie International Edition 48: 4785-4787.

    Google Scholar 

  149. Ponnamma D, Sadasivuni K K, Strankowski M, Guo Q, Thomas S (2013) Synergistic effect of multi walled carbon nanotubes and reduced graphene oxides in natural rubber for sensing application. Soft Matter 9: 10343-10353.

    Google Scholar 

  150. Jang H, Kim Y K, Kwon H M, Yeo W S, Kim D E, Min D H (1999) A grapheme based platform for the assay of dup lex-DNA unwinding by helicase. Angewandte Chemie International Edition 49: 5703-5707.

    Google Scholar 

  151. Bonnet G, Tyagi S, Libchaber A, Kramer F R (1999) Thermodynamic basis of the enhanced specificity of structured DNA probes. Proc. Natl. Acad. Sci. 96: 6171-6176.

    Google Scholar 

  152. Wang K, Tang Z, Yang C J, Kim Y, Fang X, Li W, Wu Y, Medley C D, Cao Z, Li J, Colon P, Lin H, Tan W (2009) Molecular engineering of DNA: Molecular beacons. Angewandte Chemie International Edition 48: 856-870.

    Google Scholar 

  153. Lu C H, Li J, Liu J J, Yang H H, Chen X, Chen G N (2010) Increasing the sensitivity and single-base mismatch selectivity of the molecular beacon using graphene oxide as the “nanoquencher”. Chemistry - A European Journal 16: 4889- 4894.

    Google Scholar 

  154. Li F, Huang Y, Yang Q, Zhong Z, Li D, Wang L, Song S, Fan C (2010) A grapheme enhanced molecular beacon for homogeneous DNA detection. Nanoscale 2: 1021-1026.

    Google Scholar 

  155. Lu C H, Zhu C L, Li J, Liu J J, Chen X, Yang H H (2010) Using graphene to protect DNA from cleavage during cellular delivery. Chemical Communications 46: 3116-3118.

    Google Scholar 

  156. Dong H, Gao W, Yan F, Ji H, Ju H (2010) Fluorescence resonance energy transfer between quantum dots and graphene oxide for sensing biomolecules. Analytical Chemistry 82: 5511-5517.

    Google Scholar 

  157. Balapanuru J, Yang J X, Xiao S, Bao Q, Jahan M, Polavarapu L, Wei J, Xu Q H, Loh K P (2010) A graphene oxide-organic dye ionic complex with DNA-sensing and optical-limiting properties. Angewandte Chemie International Edition 49: 6549-6553.

    Google Scholar 

  158. Wang Y, Li Z, Hu D, Lin C T, Li J, Lin Y (2010) Aptamer/ graphene oxide nanocomplex for in situ molecular probing in living cells. Journal of the American Chemical Society 132: 9274-9276.

    Google Scholar 

  159. Kodali V K, Scrimgeour J, Kim S, Hankinson J H, Carroll K M, De Heer W A, Berger C, Curtis J E (2011) Nonperturbative chemical modification of graphene for protein micropatterning. Langmuir 27: 863-865.

    Google Scholar 

  160. Dong X L, Cheng J S, Li J H, Wang Y (2010) Graphene as a novel matrix for the analysis of small molecules by MALDI-TOF MS. Analytical Chemistry 82 : 6208-6214 .

    Google Scholar 

  161. Tang L H, Wang Y, Liu Y, Li J (2011) DNA-directed self-assembly of graphene oxide with applications to ultrasensitive oligonucleotide assay. ACS Nano 5: 3817-3822 .

    Google Scholar 

  162. Prasad B B, Kumar D, Madhuri R, Tiwari M P (2011) Metal ion mediated imprinting for electrochemical enantioselective sensing of Lhistidine at trace level. Biosensors and Bioelectronics 28: 117-126.

    Google Scholar 

  163. Wang Z, Hu Y, Yang W, Zhou M, Hu X (2012) Facile One-Step Microwave-Assisted Route towards Ni Nanospheres/Reduced Graphene Oxide Hybrids for Non-Enzymatic Glucose Sensing. Sensors (Basel) 12: 4860- 4869.

    Google Scholar 

  164. Yang Y C, Dong S W, Shen T, Jian C X, Chang H J, Li Y, He F T, Zhou J X (2012) A Label-Free Amperometric Immunoassay for Thrombomodulin Using Graphene/Silver-Silver Oxide Nanoparticles as a Immobilization Matrix. Analytical Letters 45: 724-734.

    Google Scholar 

  165. Feng L, Gao G, Zhang C, Ma J, Cui D (2012) Electrochemical ascorbic acid/hydroquinone detection on graphene electrode and the electro-active site study. Journal of Experimental Nanoscience Version of record first published.

    Google Scholar 

  166. Lian H, Sun Z, Sun X, Liu B (2012) Graphene Doped Molecularly Imprinted Electrochemical Sensor for Uric Acid. Analytical Letters 45: 2717-2727.

    Google Scholar 

  167. Nayak T R, Andersen H, Makam V S, Khaw C, Bae S, Xu X, Ee P L R, Ahn J H, Hong B H, Pastorin G, Özyilmaz B(2011) Graphene for controlled and accelerated osteogenic differentiation of human mesenchymal stem cells. ACS Nano 5: 4670 – 4678.

    Google Scholar 

  168. Abdullahil K, Mithilesh Y, Sadasivuni K K, Mun S, Gao X, Kim J (2014) Synthesis and characterization of graphene/cellulose nanocomposite. Proc. SPIE 9060, Nanosensors, Biosensors, and Info-Tech Sensors and Systems 2014, 906008; doi:10.1117/12.2044964.

  169. Ponnamma D, Thomas S (2013) Green Composites Green Methods to Synthesize and Recycle Materials- A promise to future, In Recent Advances in Rubber Recycling Edited by Yves Grohens, Kishor Kumar Sadasivuni and Abderrahim Boudenne, Apple Academic Press, ISBN: 9781926895277.

    Google Scholar 

  170. Jie W, Hao J (2014) Graphene-based hybrid structures combined with functional materials of ferroelectrics and Semiconductors, Nanoscale, 6: 6346-6362.

    Google Scholar 

  171. Lee W, Kahya O, Toh C T, zyilmaz B O, Ahn J H (2013) Flexible graphene–PZT ferroelectric nonvolatile memory, Nanotechnology, 24: 475202.

    Google Scholar 

  172. Ni G, Zheng Y, Bae S, YawTan C, Kahya O, Wu J, Hong B H, Yao K, Ozyilmaz B (2012) GrapheneFerroelectric Hybrid Structure for Flexible Transparent Electrodes, ACS Nano, 6: 3935–3942.

    Google Scholar 

  173. Yusuf M H, Nielsen B, Dawber M, Du X (2014) Extrinsic and Intrinsic Charge Trapping at the Graphene/Ferroelectric Interface, Nano Lett. 14: 5437 − 5444.

    Google Scholar 

  174. Rajapitamahuni A, Hoffman J, Ahn C H, Hong X (2013) Examining Graphene Field Effect Sensors for Ferroelectric Thin Film Studies, Nano Lett. 13: 4374 − 4379.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kishor Kumar Sadasivuni .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Ponnamma, D., Sadasivuni, K.K. (2015). Graphene/Polymer Nanocomposites: Role in Electronics. In: Sadasivuni, K., Ponnamma, D., Kim, J., Thomas, S. (eds) Graphene-Based Polymer Nanocomposites in Electronics. Springer Series on Polymer and Composite Materials. Springer, Cham. https://doi.org/10.1007/978-3-319-13875-6_1

Download citation

Publish with us

Policies and ethics