Skip to main content

Plasmonic Photocatalysts with Wide Light Absorption Spectra and High Charge Separation Efficiencies

  • Chapter
From Molecules to Materials

Abstract

Plasmonic photocatalysts have recently attracted increasing interests due to its superior photocatalytic performances and potential applications on solving energy and environmental problems. Due to the unique localized surface plasmon resonance effects (LSPRs), plasmonic photocatalysts exhibit wide light absorption spectra and high charge carriers separation efficiencies. In this chapter, we briefly introduced the basic principles of LSPRs, and reviewed recent development of plasmonic photocatalysts.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Sherry LJ, Jin RC, Mirkin CA, Schatz GC, and Van Duyne RP (2006) Localized surface plasmon resonance spectroscopy of single silver triangular nanoprisms. Nano Lett 6, 2060-5.

    Article  Google Scholar 

  2. Amendola V, Bakr OM, and Stellacci F (2010) A Study of the Surface Plasmon Resonance of Silver Nanoparticles by the Discrete Dipole Approximation Method: Effect of Shape, Size, Structure, and Assembly. Plasmonics 5, 85-97.

    Article  Google Scholar 

  3. Beyene HT, Chakravadhanula VSK, Hanisch C, Elbahri M, Strunskus T, Zaporojtchenko V et al. (2010) Preparation and plasmonic properties of polymer-based composites containing Ag-Au alloy nanoparticles produced by vapor phase co-deposition. Journal of Materials Science 45, 5865-71.

    Article  Google Scholar 

  4. Pastoriza-Santos I, Alvarez-Puebla RA, and Liz-Marzan LM (2010) Synthetic Routes and Plasmonic Properties of Noble Metal Nanoplates. European Journal of Inorganic Chemistry 4288-97.

    Google Scholar 

  5. Gupta MK, Konig T, Near R, Nepal D, Drummy LF, Biswas S et al. (2013) Surface Assembly and Plasmonic Properties in Strongly Coupled Segmented Gold Nanorods. Small 9, 2979-90.

    Article  Google Scholar 

  6. Amendola V, Scaramuzza S, Agnoli S, Polizzi S, and Meneghetti M (2014) Strong dependence of surface plasmon resonance and surface enhanced Raman scattering on the composition of Au-Fe nanoalloys. Nanoscale 6, 1423-33.

    Article  Google Scholar 

  7. Chan GH, Zhao J, Hicks EM, Schatz GC, and Van Duyne RP (2007) Plasmonic properties of copper nanoparticles fabricated by nanosphere lithography. Nano Lett 7, 1947-52.

    Article  Google Scholar 

  8. Jain PK and El-Sayed MA (2008) Noble Metal Nanoparticle Pairs: Effect of Medium for Enhanced Nanosensing. Nano Lett 8, 4347-52.

    Article  Google Scholar 

  9. Huang XH, Neretina S, and El-Sayed MA (2009) Gold Nanorods: From Synthesis and Properties to Biological and Biomedical Applications. Advanced Materials 21, 4880-910.

    Article  Google Scholar 

  10. Jain PK and El-Sayed MA (2010) Plasmonic coupling in noble metal nanostructures. Chemical Physics Letters 487, 153-64.

    Article  Google Scholar 

  11. Tian LM, Chen E, Gandra N, Abbas A, and Singamaneni S (2012) Gold Nanorods as Plasmonic Nanotransducers: Distance-Dependent Refractive Index Sensitivity. Langmuir 28, 17435-42.

    Article  Google Scholar 

  12. Verbruggen SW, Keulemans M, Martens JA, and Lenaerts S (2013) Predicting the Surface Plasmon Resonance Wavelength of Gold-Silver Alloy Nanoparticles. Journal of Physical Chemistry C 117, 19142-5.

    Article  Google Scholar 

  13. Wang Z, Liu J, and Chen W (2012b) Plasmonic Ag/AgBr nanohybrid: synergistic effect of SPR with photographic sensitivity for enhanced photocatalytic activity and stability. Dalton Transactions 41, 4866-70.

    Article  Google Scholar 

  14. Zhang X, Chen YL, Liu R-S, and Tsai DP (2013) Plasmonic photocatalysis. Reports on Progress in Physics 76, 046401.

    Article  Google Scholar 

  15. Gordon R, Sinton D, Kavanagh KL, and Brolo AG (2008) A new generation of sensors based on extraordinary optical transmission. Accounts of chemical research 41, 1049-57.

    Article  Google Scholar 

  16. Wang P, Huang BB, Dai Y, and Whangbo MH (2012a) Plasmonic photocatalysts: harvesting visible light with noble metal nanoparticles. Physical Chemistry Chemical Physics 14, 9813-25.

    Article  Google Scholar 

  17. Atwater HA and Polman A (2010) Plasmonics for improved photovoltaic devices. Nat Mater 9, 205-13.

    Article  Google Scholar 

  18. Barnes WL, Dereux A, and Ebbesen TW (2003) Surface plasmon subwavelength optics. Nature 424, 824-30.

    Article  Google Scholar 

  19. Jain P, Huang X, El-Sayed I, and El-Sayed M (2007) Review of Some Interesting Surface Plasmon Resonance-enhanced Properties of Noble Metal Nanoparticles and Their Applications to Biosystems. Plasmonics 2, 107-18.

    Article  Google Scholar 

  20. Tian Y and Tatsuma T (2005a) Mechanisms and applications of plasmon-induced charge separation at TiO2 films loaded with gold nanoparticles. J Am Chem Soc 127, 7632-7.

    Article  Google Scholar 

  21. Yu K, Tian Y, and Tatsuma T (2006) Size effects of gold nanaoparticles on plasmon-induced photocurrents of gold-TiO2 nanocomposites. Physical Chemistry Chemical Physics 8, 5417-20.

    Article  Google Scholar 

  22. Furube A, Du L, Hara K, Katoh R, and Tachiya M (2007) Ultrafast plasmon-induced electron transfer from gold nanodots into TiO2 nanoparticles. J Am Chem Soc 129, 14852-3.

    Article  Google Scholar 

  23. Kowalska E, Remita H, Colbeau-Justin C, Hupka J, and Belloni J (2008) Modification of Titanium Dioxide with Platinum Ions and Clusters: Application in Photocatalysis. The Journal of Physical Chemistry C 112, 1124-31.

    Article  Google Scholar 

  24. Wu XF, Song HY, Yoon JM, Yu YT, and Chen YF (2009) Synthesis of core-shell Au@TiO2 nanoparticles with truncated wedge-shaped morphology and their photocatalytic properties. Langmuir 25, 6438-47.

    Article  Google Scholar 

  25. Linic S, Christopher P, and Ingram DB (2011) Plasmonic-metal nanostructures for efficient conversion of solar to chemical energy. Nat Mater 10, 911-21.

    Article  Google Scholar 

  26. Ingram DB and Linic S (2011) Water splitting on composite plasmonic-metal/semiconductor photoelectrodes: evidence for selective plasmon-induced formation of charge carriers near the semiconductor surface. Journal of the American Chemical Society 133, 5202-5.

    Article  Google Scholar 

  27. Cushing SK, Li J, Meng F, Senty TR, Suri S, Zhi M et al. (2012) Photocatalytic activity enhanced by plasmonic resonant energy transfer from metal to semiconductor. Journal of the American Chemical Society 134, 15033-41.

    Article  Google Scholar 

  28. Awazu K, Fujimaki M, Rockstuhl C, Tominaga J, Murakami H, Ohki Y et al. (2008) A plasmonic photocatalyst consisting of silver nanoparticles embedded in titanium dioxide. J Am Chem Soc 130, 1676-80.

    Article  Google Scholar 

  29. Chen X, Zhu HY, Zhao JC, Zheng ZF, and Gao XP (2008) Visible-Light-Driven Oxidation of Organic Contaminants in Air with Gold Nanoparticle Catalysts on Oxide Supports. Angewandte Chemie 120, 5433-6.

    Article  Google Scholar 

  30. Wang P, Huang BB, Qin XY, Zhang XY, Dai Y, Wei JY et al. (2008) Ag@AgCl: A highly efficient and stable photocatalyst active under visible light. Angewandte Chemie-International Edition 47, 7931-3.

    Article  Google Scholar 

  31. Sun S, Wang W, Zhang L, Shang M, and Wang L (2009) Ag@ C core/shell nanocomposite as a highly efficient plasmonic photocatalyst. Catalysis Communications 11, 290-3.

    Article  Google Scholar 

  32. Chen J-J, Wu JC, Wu PC, and Tsai DP (2010) Plasmonic photocatalyst for H2 evolution in photocatalytic water splitting. The Journal of Physical Chemistry C 115, 210-6.

    Article  Google Scholar 

  33. Li R, Chen W, Kobayashi H, and Ma C (2010) Platinum-nanoparticle-loaded bismuth oxide: an efficient plasmonic photocatalyst active under visible light. Green Chemistry 12, 212-5.

    Article  Google Scholar 

  34. Naya S-i, Inoue A, and Tada H (2010) Self-assembled heterosupramolecular visible light photocatalyst consisting of gold nanoparticle-loaded titanium (IV) dioxide and surfactant. Journal of the American Chemical Society 132, 6292-3.

    Article  Google Scholar 

  35. Wang P, Huang BB, Lou ZZ, Zhang XY, Qin XY, Dai Y et al. (2010) Synthesis of Highly Efficient Ag@AgCl Plasmonic Photocatalysts with Various Structures. Chemistry-a European Journal 16, 538-44.

    Article  Google Scholar 

  36. Hou W, Hung WH, Pavaskar P, Goeppert A, Aykol M, and Cronin SB (2011a) Photocatalytic conversion of CO2 to hydrocarbon fuels via plasmon-enhanced absorption and metallic interband transitions. ACS Catalysis 1, 929-36.

    Article  Google Scholar 

  37. Ingram DB, Christopher P, Bauer JL, and Linic S (2011) Predictive model for the design of plasmonic metal/semiconductor composite photocatalysts. ACS Catalysis 1, 1441-7.

    Article  Google Scholar 

  38. Primo A, Marino T, Corma A, Molinari R, and Garcia H (2011) Efficient visible-light photocatalytic water splitting by minute amounts of gold supported on nanoparticulate CeO2 obtained by a biopolymer templating method. Journal of the American Chemical Society 133, 6930-3.

    Article  Google Scholar 

  39. Wang P, Huang B, Zhang X, Qin X, Dai Y, Wang Z et al. (2011) Highly Efficient Visible Light Plasmonic Photocatalysts Ag@Ag(Cl,Br) and Ag@AgCl-AgI. ChemCatChem 3, 360-4.

    Article  Google Scholar 

  40. Zhai W, Xue S, Zhu A, Luo Y, and Tian Y (2011) Plasmon-Driven Selective Oxidation of Aromatic Alcohols to Aldehydes in Water with Recyclable Pt/TiO2 Nanocomposites. ChemCatChem 3, 127-30.

    Article  Google Scholar 

  41. Zhang P, Shao C, Zhang Z, Zhang M, Mu J, Guo Z et al. (2011a) Core/shell nanofibers of TiO2@ carbon embedded by Ag nanoparticles with enhanced visible photocatalytic activity. Journal of Materials Chemistry 21, 17746-53.

    Article  Google Scholar 

  42. Zhang Q, Lima DQ, Lee I, Zaera F, Chi M, and Yin Y (2011b) A Highly Active Titanium Dioxide Based Visible-Light Photocatalyst with Nonmetal Doping and Plasmonic Metal Decoration. Angewandte Chemie 123, 7226-30.

    Article  Google Scholar 

  43. Zheng Z, Huang B, Qin X, Zhang X, Dai Y, and Whangbo M-H (2011) Facile in situ synthesis of visible-light plasmonic photocatalysts M@ TiO2 (M = Au, Pt, Ag) and evaluation of their photocatalytic oxidation of benzene to phenol. Journal of Materials Chemistry 21, 9079-87.

    Article  Google Scholar 

  44. Zhao Y, Pan H, Lou Y, Qiu X, Zhu J, and Burda C (2009) Plasmonic Cu2− x S Nanocrystals: Optical and Structural Properties of Copper-Deficient Copper (I) Sulfides. Journal of the American Chemical Society 131, 4253-61.

    Article  Google Scholar 

  45. Manthiram K and Alivisatos AP (2012) Tunable localized surface plasmon resonances in tungsten oxide nanocrystals. Journal of the American Chemical Society 134, 3995-8.

    Article  Google Scholar 

  46. Kumar MK, Krishnamoorthy S, Tan LK, Chiam SY, Tripathy S, and Gao H (2011) Field effects in plasmonic photocatalyst by precise SiO2 thickness control using atomic layer deposition. ACS Catalysis 1, 300-8.

    Article  Google Scholar 

  47. Tian Y and Tatsuma T (2005b) Mechanisms and applications of plasmon-induced charge separation at TiO2 films loaded with gold nanoparticles. Journal of the American Chemical Society 127, 7632-7.

    Article  Google Scholar 

  48. Gomes Silva Cu, Juárez R, Marino T, Molinari R, and García H (2010) Influence of excitation wavelength (UV or visible light) on the photocatalytic activity of titania containing gold nanoparticles for the generation of hydrogen or oxygen from water. Journal of the American Chemical Society 133, 595-602.

    Article  Google Scholar 

  49. Thimsen E, Le Formal F, Grätzel M, and Warren SC (2010) Influence of plasmonic Au nanoparticles on the photoactivity of Fe2O3 electrodes for water splitting. Nano letters 11, 35-43.

    Article  Google Scholar 

  50. Tanaka A, Hashimoto K, and Kominami H (2014) Visible light-induced hydrogen and oxygen formation over Pt/Au/WO3 photocatalyst utilizing two types of photoabsorption due to surface plasmon resonance and band-gap excitation. Journal of the American Chemical Society 136, 586-9.

    Article  Google Scholar 

  51. Liu L, Ouyang S, and Ye J (2013a) Gold-Nanorod-Photosensitized Titanium Dioxide with Wide-Range Visible-Light Harvesting Based on Localized Surface Plasmon Resonance. Angewandte Chemie 125, 6821-5.

    Article  Google Scholar 

  52. Pu Y-C, Wang G, Chang K-D, Ling Y, Lin Y-K, Fitzmorris BC et al. (2013) Au Nanostructure-Decorated TiO2 Nanowires Exhibiting Photoactivity Across Entire UV-visible Region for Photoelectrochemical Water Splitting. Nano letters 13, 3817-23.

    Article  Google Scholar 

  53. Schürch D, Currao A, Sarkar S, Hodes G, and Calzaferri G (2002) The Silver Chloride Photoanode in Photoelectrochemical Water Splitting. The Journal of Physical Chemistry B 106, 12764-75.

    Article  Google Scholar 

  54. Kakuta N, Goto N, Ohkita H, and Mizushima T (1999) Silver Bromide as a Photocatalyst for Hydrogen Generation from CH3OH/H2O Solution. The Journal of Physical Chemistry B 103, 5917-9.

    Article  Google Scholar 

  55. An C, Peng S, and Sun Y (2010) Facile Synthesis of Sunlight-Driven AgCl:Ag Plasmonic Nanophotocatalyst. Advanced Materials 22, 2570-4.

    Article  Google Scholar 

  56. Lou Z, Huang B, Qin X, Zhang X, Wang Z, Zheng Z et al. (2011a) One-step synthesis of AgBr microcrystals with different morphologies by ILs-assisted hydrothermal method. CrystEngComm 13, 1789-93.

    Article  Google Scholar 

  57. Lou Z, Huang B, Wang P, Wang Z, Qin X, Zhang X et al. (2011b) The synthesis of the near-spherical AgCl crystal for visible light photocatalytic applications. Dalton Transactions 40, 4104-10.

    Article  Google Scholar 

  58. Wang P, Huang B, Zhang X, Qin X, Jin H, Dai Y et al. (2009b) Highly Efficient Visible-Light Plasmonic Photocatalyst Ag@ AgBr. Chemistry-A European Journal 15, 1821-4.

    Article  Google Scholar 

  59. Huang H, Li X, Kang Z, Liu Y, Li H, He X et al. (2010) Tuning metal@metal salt photocatalytic abilities by different charged anions. Dalton Transactions 39, 10593-7.

    Article  Google Scholar 

  60. Seki K, Yanagi H, Kobayashi Y, Ohta T, and Tani T (1994) UV photoemission study of dye/AgBr interfaces in relation to spectral sensitization. Phys Rev B Condens Matter 49, 2760-7.

    Article  Google Scholar 

  61. Wang P, Huang B, Qin X, Zhang X, Dai Y, and Whangbo M-H (2009a) Ag/AgBr/WO3·H2O: Visible-Light Photocatalyst for Bacteria Destruction. Inorganic Chemistry 48, 10697-702.

    Article  Google Scholar 

  62. Yu J, Dai G, and Huang B (2009) Fabrication and Characterization of Visible-Light-Driven Plasmonic Photocatalyst Ag/AgCl/TiO2 Nanotube Arrays. The Journal of Physical Chemistry C 113, 16394-401.

    Article  Google Scholar 

  63. Hou Y, Li X, Zhao Q, Quan X, and Chen G (2011b) TiO2 nanotube/Ag-AgBr three-component nanojunction for efficient photoconversion. Journal of Materials Chemistry 21, 18067-76.

    Article  Google Scholar 

  64. Song L, Yang Y, Zhang Q, Tian H, and Zhu W (2011) Synthesis and photochromism of naphthopyrans bearing naphthalimide chromophore: predominant thermal reversibility in color-fading and fluorescence switch. J Phys Chem B 115, 14648-58.

    Article  Google Scholar 

  65. Cheng H, Huang B, Wang P, Wang Z, Lou Z, Wang J et al. (2011) In situ ion exchange synthesis of the novel Ag/AgBr/BiOBr hybrid with highly efficient decontamination of pollutants. Chemical Communications 47, 7054-6.

    Article  Google Scholar 

  66. Hu C, Peng T, Hu X, Nie Y, Zhou X, Qu J et al. (2009) Plasmon-Induced Photodegradation of Toxic Pollutants with Ag–AgI/Al2O3 under Visible-Light Irradiation. Journal of the American Chemical Society 132, 857-62.

    Article  Google Scholar 

  67. Hu X, Hu C, Peng T, Zhou X, and Qu J (2010) Plasmon-Induced Inactivation of Enteric Pathogenic Microorganisms with Ag–AgI/Al2O3 under Visible-Light Irradiation. Environmental Science & Technology 44, 7058-62.

    Article  Google Scholar 

  68. Luther JM, Jain PK, Ewers T, and Alivisatos AP (2011) Localized surface plasmon resonances arising from free carriers in doped quantum dots. Nature materials 10, 361-6.

    Article  Google Scholar 

  69. Kanehara M, Koike H, Yoshinaga T, and Teranishi T (2009) Indium tin oxide nanoparticles with compositionally tunable surface plasmon resonance frequencies in the near-IR region. Journal of the American Chemical Society 131, 17736-7.

    Article  Google Scholar 

  70. Garcia G, Buonsanti R, Runnerstrom EL, Mendelsberg RJ, Llordes A, Anders A et al. (2011) Dynamically modulating the surface plasmon resonance of doped semiconductor nanocrystals. Nano letters 11, 4415-20.

    Article  Google Scholar 

  71. Buonsanti R, Llordes A, Aloni S, Helms BA, and Milliron DJ (2011) Tunable infrared absorption and visible transparency of colloidal aluminum-doped zinc oxide nanocrystals. Nano letters 11, 4706-10.

    Article  Google Scholar 

  72. Gordon TR, Paik T, Klein DR, Naik GV, Caglayan H, Boltasseva A et al. (2013) Shape-Dependent Plasmonic Response and Directed Self-Assembly in a New Semiconductor Building Block, Indium-Doped Cadmium Oxide (ICO). Nano letters 13, 2857-63.

    Article  Google Scholar 

  73. Xu J, Li L, Wang S, Ding H, Zhang Y, and Li G (2013) Influence of Sb doping on the structural and optical properties of tin oxide nanocrystals. CrystEngComm 15, 3296-300.

    Article  Google Scholar 

  74. Chou L-W, Shin N, Sivaram SV, and Filler MA (2012) Tunable mid-infrared localized surface plasmon resonances in silicon nanowires. Journal of the American Chemical Society 134, 16155-8.

    Article  Google Scholar 

  75. Chou LW and Filler MA (2013) Engineering Multimodal Localized Surface Plasmon Resonances in Silicon Nanowires. Angewandte Chemie International Edition 52, 8079-83.

    Article  Google Scholar 

  76. Dorfs D, Härtling T, Miszta K, Bigall NC, Kim MR, Genovese A et al. (2011) Reversible Tunability of the Near-Infrared Valence Band Plasmon Resonance in Cu2–x Se Nanocrystals. Journal of the American Chemical Society 133, 11175-80.

    Article  Google Scholar 

  77. Hsu S-W, On K, and Tao AR (2011) Localized surface plasmon resonances of anisotropic semiconductor nanocrystals. Journal of the American Chemical Society 133, 19072-5.

    Article  Google Scholar 

  78. Hsu S-W, Bryks W, and Tao AR (2012) Effects of Carrier Density and Shape on the Localized Surface Plasmon Resonances of Cu2–x S Nanodisks. Chemistry of Materials 24, 3765-71.

    Article  Google Scholar 

  79. Kriegel I, Jiang C, Rodríguez-Fernández J, Schaller RD, Talapin DV, Da Como E et al. (2012) Tuning the excitonic and plasmonic properties of copper chalcogenide nanocrystals. Journal of the American Chemical Society 134, 1583-90.

    Article  Google Scholar 

  80. Zhao Y and Burda C (2012) Development of plasmonic semiconductor nanomaterials with copper chalcogenides for a future with sustainable energy materials. Energy & Environmental Science 5, 5564-76.

    Article  Google Scholar 

  81. Jain PK, Manthiram K, Engel JH, White SL, Faucheaux JA, and Alivisatos AP (2013) Doped Nanocrystals as Plasmonic Probes of Redox Chemistry. Angewandte Chemie International Edition 52, 13671-5.

    Article  Google Scholar 

  82. Li W, Zamani R, Rivera Gil P, Pelaz B, Ibáñez M, Cadavid D et al. (2013) CuTe Nanocrystals: Shape and Size Control, Plasmonic Properties, and Use as SERS Probes and Photothermal Agents. Journal of the American Chemical Society 135, 7098-101.

    Article  Google Scholar 

  83. Liu X, Lee C, Law W-C, Zhu D, Liu M, Jeon M et al. (2013c) Au–Cu2–x Se Heterodimer Nanoparticles with Broad Localized Surface Plasmon Resonance as Contrast Agents for Deep Tissue Imaging. Nano letters 13, 4333-9.

    Article  Google Scholar 

  84. Liu X, Wang X, Zhou B, Law WC, Cartwright AN, and Swihart MT (2013d) Size-Controlled Synthesis of Cu2-xE (E = S, Se) Nanocrystals with Strong Tunable Near-Infrared Localized Surface Plasmon Resonance and High Conductivity in Thin Films. Advanced Functional Materials 23, 1256-64.

    Article  Google Scholar 

  85. Xie Y, Carbone L, Nobile C, Grillo V, D’Agostino S, Della Sala F et al. (2013a) Metallic-like Stoichiometric Copper Sulfide Nanocrystals: Phase-and Shape-Selective Synthesis, Near-Infrared Surface Plasmon Resonance Properties, and Their Modeling. ACS nano 7, 7352-69.

    Article  Google Scholar 

  86. Xie Y, Riedinger A, Prato M, Casu A, Genovese A, Guardia P et al. (2013b) Copper Sulfide Nanocrystals with Tunable Composition by Reduction of Covellite Nanocrystals with Cu + Ions. Journal of the American Chemical Society 135, 17630-7.

    Article  Google Scholar 

  87. Gordon TR, Cargnello M, Paik T, Mangolini F, Weber RT, Fornasiero P et al. (2012) Nonaqueous synthesis of TiO2 nanocrystals using TiF4 to engineer morphology, oxygen vacancy concentration, and photocatalytic activity. Journal of the American Chemical Society 134, 6751-61.

    Article  Google Scholar 

  88. Huang Q, Hu S, Zhuang J, and Wang X (2012) MoO3–x-Based Hybrids with Tunable Localized Surface Plasmon Resonances: Chemical Oxidation Driving Transformation from Ultrathin Nanosheets to Nanotubes. Chemistry-A European Journal 18, 15283-7.

    Article  Google Scholar 

  89. Cheng H, Kamegawa T, Mori K, and Yamashita H (2014) Surfactant-Free Nonaqueous Synthesis of Plasmonic Molybdenum Oxide Nanosheets with Enhanced Catalytic Activity for Hydrogen Generation from Ammonia Borane under Visible Light. Angewandte Chemie International Edition

    Google Scholar 

  90. Liu X and Swihart MT (2014) Heavily-doped colloidal semiconductor and metal oxide nanocrystals: an emerging new class of plasmonic nanomaterials. Chemical Society Reviews

    Google Scholar 

  91. Tian Q, Jiang F, Zou R, Liu Q, Chen Z, Zhu M et al. (2011) Hydrophilic Cu9S5 nanocrystals: A photothermal agent with a 25.7% heat conversion efficiency for photothermal ablation of cancer cells in vivo. ACS nano 5, 9761-71.

    Article  Google Scholar 

  92. Ku G, Zhou M, Song S, Huang Q, Hazle J, and Li C (2012) Copper sulfide nanoparticles as a new class of photoacoustic contrast agent for deep tissue imaging at 1064 nm. Acs Nano 6, 7489-96.

    Article  Google Scholar 

  93. Liu X, Law WC, Jeon M, Wang X, Liu M, Kim C et al. (2013b) Cu2–xSe Nanocrystals with Localized Surface Plasmon Resonance as Sensitive Contrast Agents for In Vivo Photoacoustic Imaging: Demonstration of Sentinel Lymph Node Mapping. Advanced healthcare materials 2, 952-7.

    Article  Google Scholar 

  94. Chen D and Ye J (2008) Hierarchical WO3 hollow shells: dendrite, sphere, dumbbell, and their photocatalytic properties. Advanced Functional Materials 18, 1922-8.

    Article  Google Scholar 

  95. Yang HG, Sun CH, Qiao SZ, Zou J, Liu G, Smith SC et al. (2008) Anatase TiO2 single crystals with a large percentage of reactive facets. Nature 453, 638-41.

    Article  Google Scholar 

  96. Kim Y, Park KY, Jang DM, Song YM, Kim HS, Cho YJ et al. (2010) Synthesis of Au–Cu2S Core–Shell Nanocrystals and Their Photocatalytic and Electrocatalytic Activity. The Journal of Physical Chemistry C 114, 22141-6.

    Article  Google Scholar 

  97. Chen X, Liu L, Peter YY, and Mao SS (2011) Increasing solar absorption for photocatalysis with black hydrogenated titanium dioxide nanocrystals. Science 331, 746-50.

    Article  Google Scholar 

  98. Liu Y, Deng Y, Sun Z, Wei J, Zheng G, Asiri AM et al. (2013e) Hierarchical Cu2S Microsponges Constructed from Nanosheets for Efficient Photocatalysis. Small 9, 2702-8.

    Article  Google Scholar 

  99. Yadav M and Xu Q (2012) Liquid-phase chemical hydrogen storage materials. Energy & Environmental Science 5, 9698-725.

    Article  Google Scholar 

  100. Fuku K, Hayashi R, Takakura S, Kamegawa T, Mori K, and Yamashita H (2013) The Synthesis of Size-and Color-Controlled Silver Nanoparticles by Using Microwave Heating and their Enhanced Catalytic Activity by Localized Surface Plasmon Resonance. Angewandte Chemie International Edition 52, 7446-50.

    Article  Google Scholar 

Download references

Acknowledgments

 Parts of work described in Sect. 4 were financially supported by the National Basic Research Program of China (the 973 Program: No. 2013CB632401) and the National Natural Science Foundation of China (no. 21333006, 11374190, and 51021062). Peng Wang thanks the Center for Nanoscale Materials, a US Department of Energy, Office of Science, Office of Basic Energy Sciences user facility under contract no. DE-AC02-06CH11357.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Baibiao Huang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Wang, Z. et al. (2015). Plasmonic Photocatalysts with Wide Light Absorption Spectra and High Charge Separation Efficiencies. In: Rozhkova, E., Ariga, K. (eds) From Molecules to Materials. Springer, Cham. https://doi.org/10.1007/978-3-319-13800-8_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-13800-8_9

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-13799-5

  • Online ISBN: 978-3-319-13800-8

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics