Skip to main content

New Technologies for Phenotyping

  • Chapter
  • First Online:
Phenomics

Abstract

Improvements in agronomical practices and crop breeding are paramount responses to the present and future challenges imposed by water stress and heat (Lobell et al. 2011a, b; Cairns et al. 2013; Hawkins et al. 2013). On what concerns breeding, constraints in field phenotyping capability currently limit our ability to dissect the genetics of quantitative traits, especially those related to yield and water stress tolerance. Progress in sensors, aeronautics and high-performance computing is paving the way. Field high throughput platforms will combine non-invasive remote-sensing methods, together with automated environmental data collection. In addition, laboratory analyses of key plant parts may complement direct phenotyping under field conditions (Araus and Cairns 2014). Moreover, these phenotyping techniques may also help to cope with spatial variability inherent to phenotyping in the field.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Araus JL, Slafer GA, Reynolds MP, Royo C (2002) Plant breeding and water stress in C3 cereals: what to breed for? Ann Bot 89:925–940

    Article  PubMed Central  PubMed  Google Scholar 

  • Araus JL, Slafer GA, Royo C, Serret MD (2008) Breeding for yield potential and stress adaptation in cereals. Crit Rev Plant Sci 27:1–36

    Article  Google Scholar 

  • Araus JL, Cabrera-Bosquet L, Sánchez C (2010) Is heterosis in maize mediated through better water use? New Phytol 187:392–406

    Article  CAS  PubMed  Google Scholar 

  • Araus JL, Serret MD, Edmeades GO (2012) Phenotyping maize for adaptation to drought. Front Physiol 3:305

    Article  PubMed Central  PubMed  Google Scholar 

  • Araus JL, Cabrera-Bosquet L, Serret MD, Bort J, Nieto-Taladriz MT (2013) Comparative performance of δ13C, δ18O and δ15N for phenotyping durum wheat adaptation to a dryland environment. Funct Plant Biol 40:595–608

    Article  CAS  Google Scholar 

  • Araus JL, Cairns J (2014) Field high-throughput phenotyping—the new crop breeding frontier. Trends Plant Sci 19:52–61

    Article  CAS  PubMed  Google Scholar 

  • Barbour MM, Fischer RH, Sayre KD, Farquhar GD (2000) Oxygen isotope ratio of leaf and grain material correlates with stomatal conductance and grain yield in irrigated wheat. Aust J Plant Physiol 27:625–637

    CAS  Google Scholar 

  • Busemeyer L, Mentrup D, Möller K, Wunder E, Alheit K, Hahn V, Maurer HP, Reif JC, Würschum T, Müller J, Rahe F, Ruckelshausen A (2013) BreedVision—a multi-sensor platform for non-destructive field-based phenotyping in plant breeding. Sensors 13:2830–2847

    Article  PubMed Central  PubMed  Google Scholar 

  • Cabrera-Bosquet L, Sánchez C, Araus JL (2009a) How yield relates to ash content, Δ13C and Δ18O in maize grown under different water regimes. Ann Bot 104:1207–1216

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Cabrera-Bosquet L, Sanchez C, Araus JL (2009b) Oxygen isotope enrichment (Δ18O) reflects yield potential and drought resistance in maize. Plant Cell Environ 32:1487–1499

    Article  CAS  PubMed  Google Scholar 

  • Cabrera-Bosquet L, Albrizio R, Nogués S, Araus JL (2011a) Dual Δ13C/δ18O response to water and nitrogen availability and its relationship with yield in field-grown durum wheat. Plant Cell Environ 34:418–433

    Article  CAS  PubMed  Google Scholar 

  • Cabrera-Bosquet L, Sánchez C, Rosales A, Palacios-Rojas N, Araus JL (2011b) NIRS-assessment of δ18O, nitrogen and ash content for improved yield potential and drought adaptation in maize. J Agric Food Chem 59:467–474

    Article  CAS  PubMed  Google Scholar 

  • Cabrera-Bosquet L, Crossa J, von Zitzewitz J, Serret MD, Araus JL (2012) High-throughput phenotyping and genomic selection: the frontiers of crop breeding converge. J Integr Plant Biol 54:312–320

    Article  PubMed  Google Scholar 

  • Cairns JE, Impa SM, O’Toole JC, Jagadish SVK, Price AH (2011) Influence of the soil physical environment on drought stress and its implications for drought research. Field Crop Res 121:303–310

    Article  Google Scholar 

  • Cairns JE, Sanchez C, Vargas M, Ordoñez RA, Araus JL (2012) Dissecting maize productivity: ideotypes associated with grain yield under drought stress and well-watered conditions. J Integr Plant Biol 54:1007–1020

    Article  PubMed  Google Scholar 

  • Cairns J, Hellin J, Sonder K, Araus JL, MacRobert JF, Thierfelder C, Prasanna BP (2013) Adapting maize to climate change in sub-saharan Africa. Food Secur 5:345–360

    Article  Google Scholar 

  • Casadesús J, Kaya Y, Bort J, Nachit MM, Araus JL, Amor S, Ferrazzano G, Maalouf F, Maccaferri M, Martos V, Ouabbou H, Villegas D (2007) Using vegetation indices derived from conventional digital cameras as selection criteria for wheat breeding in water-limited environments. Ann Appl Biol 150:227–236

    Article  Google Scholar 

  • Casadesús J, Villegas D (2014) Conventional digital cameras as a tool for assessing leaf area index and biomass for cereal breeding. J Integr Plant Biol 56:7–14

    Article  PubMed  Google Scholar 

  • Cobb JN, DeClerck G, Greenberg A, Clark R, McCouch S (2013) Next-generation phenotyping: requirements and strategies for enhancing our understanding of genotype–phenotype relationships and its relevance to crop improvement. Theor Appl Genet 126:867–887

    Article  PubMed Central  PubMed  Google Scholar 

  • Comar A, Burger P, Benoit de Solan C, Baret F, Daumard F, Hanocq J-F (2012) A semi-automatic system for high throughput phenotyping wheat cultivars in-field conditions: description and first results. Funct Plant Biol 39:914–924

    Article  Google Scholar 

  • Condon AG, Richards RA, Rebetkke GJ, Farquhar GD (2002) Improving intrinsic water-use efficiency and crop yield. Crop Sci 42:122–131

    Article  PubMed  Google Scholar 

  • Condon AG, Richards RA, Rebetkke GJ, Farquhar GD (2004) Breeding for high water-use efficiency. J Exp Bot 55:2447–2460

    Article  CAS  PubMed  Google Scholar 

  • Cooper M, Messina CD, Podlich D, Totir LR, Baumgarten A, Hausmann NJ, Wright D, Graham G (2014) Predicting the future of plant breeding: complementing empirical evaluation with genetic prediction. Crop Pasture Sci 65:311–336

    Article  CAS  Google Scholar 

  • Deery D, Jimenez-Berni J, Jones H, Sirault X, Furbank R (2014) Proximal remote sensing buggies and potential applications for field-based phenotyping. Agronomy 5:349–379

    Article  Google Scholar 

  • Farquhar GD (1983) On the nature of carbon isotope discrimination in C4 species. Aust J Plant Physiol 10:205–226

    Article  CAS  Google Scholar 

  • Farquhar GD, Cernusak LA, Barnes B (2007) Heavy water fractionation during transpiration. Plant Physiol 143:11–18

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Ferrio JP, Bertran E, Nachit M, Royo C, Araus JL (2001) Near infrared reflectance spectroscopy as a new surrogate analysis for Δ13C in mature kernels of durum wheat. Aust J Agric Res 52:809–816

    Article  CAS  Google Scholar 

  • Gebbers R, Adamchuk VI (2010) Precision agriculture and food security. Science 327:828–831

    Article  CAS  PubMed  Google Scholar 

  • Gresset S1, Westermeier P, Rademacher S, Ouzunova M, Presterl T, Westhoff P, Schön CC (2014) Stable carbon isotope discrimination is under genetic control in the C4 species maize with several genomic regions influencing trait expression. Plant Physiol 164(1):131–143. doi: 10.1104/pp.113.224816. Epub 2013 Nov 26

  • Gutierrez M, Reynolds MP, Klatt AR (2010) Association of water spectral indices with plant and soil water relations in contrasting wheat genotypes. J Exp Bot 12:3291–3303

    Article  Google Scholar 

  • Hacisalihoglu G, Larbi B, Settles AM (2010) Near-infrared reflectance spectroscopy predicts protein, starch, and seed weight in intact seeds of common bean (Phaseolus vulgaris L.). J Agric Food Chem 58:702–706

    Article  CAS  PubMed  Google Scholar 

  • Hawkins E, Fricker TE, Challinor AJ, Ferro CAT, Ho CK, Osborne TM (2013) Increasing influence of heat stress on French maize yields from the 1960s to the 2030s. Glob Change Biol 19:937–947

    Article  Google Scholar 

  • Henderson S, Caemmerer S, Farquhar G (1992) Short-term measurements of carbon isotope discrimination in several C4 species. Funct Plant Biol 19:263–285

    CAS  Google Scholar 

  • Kleinebecker T, Schmidt SR, Fritz C, Smolders AJP, Hölze N (2009) Prediction of δ13C and δ15N in plant tissues with near-infrared reflectance spectroscopy. New Phytol 184:732–739

    Article  CAS  PubMed  Google Scholar 

  • Leitner D, Meunier F, Bodner G, Javaux M, Schnepf A (2014) Impact of contrasted maize root traits at flowering on water stress tolerance—a simulation study. Field Crops Res 165:125–137

    Article  Google Scholar 

  • Lobell DB, Schlenker W, Costa-Roberts J (2011a) Climate trends and global crop production since 1980. Science 333:616–620

    Article  CAS  PubMed  Google Scholar 

  • Lobell DB, Bänziger M, Magorokosho C, Vivek B (2011b) Nonlinear heat effects on African maize as evidenced by historical yield trials. Nat Glob Change 1:42–45

    Article  Google Scholar 

  • Lopes MS, Araus JL, van Heerden PDR, Foyer CH (2011) Enhancing drought tolerance in C4 crops. J Exp Bot 62:3135–3153

    Article  CAS  PubMed  Google Scholar 

  • Masuka B, Araus JL, Sonder K, Das B, Cairns JE (2012) Deciphering the code: successful abiotic stress phenotyping for molecular breeding. J Integr Plant Biol 54:238–249

    Google Scholar 

  • Mir RR, Zaman-Allah M, Sreenivasulu N, Trethowan R, Varshney RK (2012) Integrated genomics, physiology and breeding approaches for improving drought tolerance in crops. Theor Appl Genet 125:625–645

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Montes JM, Melchinger AE, Reif JC (2007) Novel throughput phenotyping platforms in plant genetic studies. Trends Plant Sci 12:433–436

    Article  CAS  PubMed  Google Scholar 

  • Montes JM, Technow F, Dhillon B, Mauch F, Melchinger A (2011) High-throughput non-destructive biomass determination during early plant development in maize under field conditions. Field Crops Res 121:268–273

    Article  Google Scholar 

  • Nguy-Robertson A, Gitelson AA, Peng Y, Viña A, Arkebauer T, Rundquist D (2012) Green leaf area index estimation in maize and soybean: combining vegetation indices to achieve maximal sensitivity. Agron J 104:1336–1347

    Article  Google Scholar 

  • Passioura JB (1977) Grain yield, harvest index, and water use of wheat. J Aust I Agr Sci 43:117–120

    Google Scholar 

  • Passioura JB (2006) The perils of pot experiments. Funct Plant Biol 33:1075–1079

    Article  Google Scholar 

  • Poorter H, Bühler J, van Dusschoten D, Climent J, Postma JA (2012) Pot size matters: a meta-analysis of the effects of rooting volume on plant growth. Funct Plant Biol 39:839–850

    Article  Google Scholar 

  • Prasanna BP, Araus JL, Crossa J, Cairns JE, Palacios N, Das B, Magotokosho C (2013) High-throughput and precision phenotyping for cereal breeding programs. In: Gupta PK, Varshney RK (eds) Cereal genomics II. Springer, Dordrecht, pp 341–374 (Chapter 13)

    Google Scholar 

  • Rebetzke GJ, Condon AG, Farquhar GD, Appels R, Richards RA (2008) Quantitative trait loci for carbon isotope discrimination are repeatable across environments and wheat mapping populations. Theor Appl Genet 118:123–137

    Article  CAS  PubMed  Google Scholar 

  • Rebetzke GJ, Chenu K, Biddulph B, Moeller C, Deery DM, Rattey AR, Bennett D, Barrett-Lennard EG, Mayer JE (2013) A multisite managed environment facility for targeted trait and germplasm phenotyping. Funct Plant Biol 40:1–13

    Article  Google Scholar 

  • Reynolds MP, Pask AJD, Mullan DM (eds) (2012) Physiological breeding I: interdisciplinary approaches to improve crop adaptation. CIMMYT, Mexico

    Google Scholar 

  • Romano G, Zia S, Spreer W, Cairns J, Araus JL, Müller J (2011) Use of thermography for high throughput phenotyping of tropical maize adaptation in water stress. Comput Electron Agric 79:67–74

    Article  Google Scholar 

  • Rorie RL, Purcell LC, Karcher DE, King CA (2011) The assessment of leaf nitrogen in corn from digital images. Crop Sci 51:2174–2180

    Article  Google Scholar 

  • Svensgaard J, Roitsch Y, Christensen S (2014) Development of a mobile multispectral imaging platform for precise field phenotyping. Agronomy 4:322–336

    Article  Google Scholar 

  • Trachsel S, Kaeppler SM, Brown KM, Lynch JP (2011) Shovelomics: high throughput phenotyping of maize (Zea mays L.) root architecture in the field. Plant Soil 341:75–87

    Article  CAS  Google Scholar 

  • Weber VS, Araus JL, Cairns JE, Sanchez C, Melchinger AE, Orsini E (2012) Prediction of grain yield using reflectance spectra of canopy and leaves in maize plants grown under different water regimes. Field Crop Res 128:82–90

    Article  Google Scholar 

  • Weiss U, Biber P (2011) Plant detection and mapping for agricultural robots using a 3D LIDAR sensor. Robot Auton Syst 59:266–273

    Article  Google Scholar 

  • White JW, Andrade-Sanchez P, Gore MA, Bronson KF, Coffelt TA, Conley MM, Feldmann KA, French AN, Heun JT, Hunsaker DJ, Jenks MA, Kimball BA, Roth RL, Strand RJ, Thorp KR, Wall GW, Wang G (2012) Field-based phenomics for plant genetics research. Field Crops Res 133:101–112

    Google Scholar 

  • Whitmore AP, Whalley WR (2009) Physical effects of soil drying on roots and crop growth. J Exp Bot 60:2845–2857

    Article  CAS  PubMed  Google Scholar 

  • Winterhalter L, Mistele B, Jampatong S, Schmidhalter U (2011) High throughput phenotyping of canopy water mass and canopy temperature in well-watered and drought stressed tropical maize hybrids in the vegetative stage. Eur J Agron 35:22–32

    Article  Google Scholar 

  • Yousfi S, Serret MD, Márquez AJ, Voltas J, Araus JL (2012) Combined use of δ13C, δ18O and δ15N tracks nitrogen metabolism and genotypic adaptation of durum wheat to salinity and water deficit. New Phytol 194:230–244

    Article  CAS  PubMed  Google Scholar 

  • Zia S, Romano G, Spreer W, Sanchez C, Cairns J, Araus JL, Müller J (2013) Infrared thermal imaging as a rapid tool for identifying water stress tolerant maize genotypes of different phenology. J Agron Crop Sci 199:75–84

    Article  Google Scholar 

Download references

Acknowledgments

The preparation of this chapter was supported by a grant (Affordable Field High Throughput Phenotyping Platform) from the MAIZE CGIAR Research Program and the Spanish project AGL2013-44147-R.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to José Luis Araus .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Araus, J.L. et al. (2015). New Technologies for Phenotyping. In: Fritsche-Neto, R., Borém, A. (eds) Phenomics. Springer, Cham. https://doi.org/10.1007/978-3-319-13677-6_1

Download citation

Publish with us

Policies and ethics