Skip to main content

TCP Reno Congestion Window Size Distribution Analysis

  • Conference paper
Information Technologies and Mathematical Modelling (ITMM 2014)

Abstract

Analysis of congestion window size distribution for TCP Reno sender is presented. The data for analysis are gathered from numerical results of an analytical model of Reno congestion control procedure based on Discrete-Time Markov Chain. The model was presented in [1] and as it is shown in this paper it provides a way to estimate congestion window distribution as a function of round trip time and loss rate for bulk transfer TCP flow. Presented results consider slow start, congestion avoidance and fast recovery phases, and fast retransmit, cumulative and selective acknowledgments, timeouts with exponential back-off and appropriate byte counting features of TCP. This paper also presents comparison of congestion window size distribution for selective and cumulative acknowledgments.

This work is performed under the state order No. 1.511.2014/K of the Ministry of Education and Science of the Russian Federation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Kokshenev, V., Suschenko, S.: Analytical Model of the TCP Reno Congestion Control Procedure through a Discrete-Time Markov Chain. In: Vishnevsky, V., Kozyrev, D., Larionov, A. (eds.) DCCN 2013. CCIS, vol. 279, pp. 124–135. Springer, Heidelberg (2014)

    Chapter  Google Scholar 

  2. Lee, D.J., Carpenter, B.E., Brownlee, N.: Media Streaming Observations: Trends in UDP to TCP Ratio. International Journal on Advances in Systems and Measurements 3(3-4) (2010)

    Google Scholar 

  3. Fall, K., Stevens, R.: TCP/IP Illustrated, 2nd edn. The Protocols, vol. 1. Addison-Wesley Professional Computing Series (2012)

    Google Scholar 

  4. Allman, M., Paxson, V., Blanton, E.: TCP Congestion Control. Internet RFC 5681 (September 2009)

    Google Scholar 

  5. Floyd, S., Henderson, T., Gurtov, A., Nishida, Y.: The NewReno Modification to TCPs Fast Recovery Algorithm. RFC6582 (April 2012)

    Google Scholar 

  6. Postel, J.: Transmission Control Protocol. Internet RFC 0793/STD 0007 (September 1981)

    Google Scholar 

  7. Van Jacobson, M.: Karels: Congestion avoidance and control. In: SIGCOMM 1988 (November 1988)

    Google Scholar 

  8. Karn, P., Partridge, C.: Improving Round-Trip Time Estimates in Reliable Transport Protocols. In: SIGCOMM 1987 (1987)

    Google Scholar 

  9. Paxson, V., Allman, M., Chu, J., Sargent, M.: Computing TCPs Retransmission Timer. RFC 6298 (June 2011)

    Google Scholar 

  10. Mathis, M., Mahdavi, J., Floyd, S., Romanow, A.: TCP Selective Acknowledgement Options. Internet RFC 2018 (October 1996)

    Google Scholar 

  11. Floyd, S., Mahdavi, J., Mathis, M., Podolsky, M.: An Extension to the Selective Acknowledgement (SACK) Option for TCP. Internet RFC 2883 (July 2000)

    Google Scholar 

  12. Blanton, E., Allman, M., Fall, K., Wang, K.: A Conservative Selective Acknowledgment (SACK)-based Loss Recovery Algorithm for TCP. RFC 3517 (April 2003)

    Google Scholar 

  13. Allman, M.: TCP Congestion Control with Appropriate Byte Counting (ABC). RFC 3465 (February 2003)

    Google Scholar 

  14. Lakshman, T.V., Madhow, U.: The performance of TCP/IP for networks with high bandwidth-delay products and random loss. ACM/IEEE Trans. on Networking 5, 336–350 (1997)

    Article  Google Scholar 

  15. Padhey, J., Firoiu, V., Towsley, D., Kurose, J.: Modeling TCP Throughput: A simple Model and Its Empirical Validation. UMASS CMPSI Tech Report TR98-008 (February 1998)

    Google Scholar 

  16. Kumar, A.: Comparative Performance Analysis of versions of TCP in a Local Network with a Lossy Link. ACM/IEEE Trans. of Networking 6, 485–498 (1998)

    Article  Google Scholar 

  17. Padhey, J., Firoiu, V., Towsley, D.: A stochastic model of TCP Reno congestion avoidance and control. Tech. Rep. UMASS-CS-TR-1999-02 (1999)

    Google Scholar 

  18. Misra, A., Baras, J., Ott, T.: Window Distribution of Multiple TCPs with Random Loss Queues. In: Proceedings of Global Telecommunications Conference, GLOBECOM 1999, pp. 1714–1729 (1999)

    Google Scholar 

  19. Casetti, C., Meo, M.: An analytical framework for the performance evaluation of TCP Reno connections. Computer Networks 37, 669–682 (2001)

    Article  Google Scholar 

  20. Wierman, A., Osogami, T., Olsen, J.: A Unified Framework for Modeling TCP-Vegas, TCP-SACK, and TCP-Reno. In: Proceedings of the 11th IEEE/ACM International Symposium on Modeling, Analysis and Simulation of Computer Telecommunications Systems (MASCOTS 2003), pp. 1526–7539 (2003)

    Google Scholar 

  21. Kassa, D.F.: Analytic Models of TCP Performance. PhD Thesis, University of Stellenbosch, p. 199 (2005)

    Google Scholar 

  22. Ewald, N., Kemp, A.: Analytical Model of TCP NewReno through a CTMC. In: Bradley, J.T. (ed.) EPEW 2009. LNCS, vol. 5652, pp. 183–196. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  23. Olsen, Y.: Stochastic modeling and simulation of the TCP protocol. Uppsla Dissertations in Mathematics 28, 94 (2003)

    MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Kokshenev, V., Suschenko, S. (2014). TCP Reno Congestion Window Size Distribution Analysis. In: Dudin, A., Nazarov, A., Yakupov, R., Gortsev, A. (eds) Information Technologies and Mathematical Modelling. ITMM 2014. Communications in Computer and Information Science, vol 487. Springer, Cham. https://doi.org/10.1007/978-3-319-13671-4_25

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-13671-4_25

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-13670-7

  • Online ISBN: 978-3-319-13671-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics