Skip to main content

The Emerging Role of Protein S-Nitrosylation in Cancer Metastasis

  • Chapter
  • First Online:
Nitric Oxide and Cancer: Pathogenesis and Therapy

Abstract

Nitric oxide (NO) has increasingly been recognized as an important cell signaling molecule that controls various steps of cancer development and metastasis. NO regulates a wide range of tumor-associated proteins through S-nitrosylation, a reversible coupling of a nitroso moiety to a reactive cysteine thiol (SH) group to form an S-nitrosothiol (SNO). In this article, we discuss the various roles of protein S-nitrosylation in cancer development with a focus on anoikis resistance, cell invasion and angiogenesis, which are key determinants of cancer metastasis. We specially address the effect of S-nitrosylation on protein function and discuss how this post-translational modification affects the aggressive and metastatic behaviors of cancer cells. We propose that dysregulated NO signaling is common in many, if not most, metastatic cancers and that understanding the S-nitrosylation process will facilitate the development of novel therapeutic and preventive strategies against cancers.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

ABCG2:

ATP-binding cassette sub-family G member 2

c-Src:

cellular Src

DETA:

diethylenetriamine

DISC:

death-inducing signaling complex

DPTA:

dipropylenetriamine

DR:

death receptor

DTT:

dithiothreitol

ECM:

extracellular matrix

EGFR:

epidermal growth factor receptor

eNOS (NOS3):

endothelial nitric oxide synthase

ER:

estrogen receptor

ERK:

extracellular signal-regulated kinase

FAK:

focal adhesion kinase

FLIP:

FLICE-inhibitory protein

FLIP2CM:

FLIP double-cysteine mutant

JNK:

Jun N-terminal kinases

IGF:

insulin-like growth factor

iNOS (NOS2):

inducible nitric oxide synthase

MKP7:

MAP kinase phosphatase 7

MMP:

matrix metalloproteinase

NO:

nitric oxide

NOS:

nitric oxide synthase

nNOS (NOS1):

neuronal NOS

PI3K:

phosphoinositide-3-kinase

PTEN:

phosphatase and tensin homolog deleted on chromosome ten

PTM:

post-translational modification

RNOS:

reactive nitrogen-oxygen species

ROS:

reactive oxygen species

SDF-1α:

stromal cell-derived factor-1α

SH:

cysteine thiol

SNAP:

S-nitroso-N-acetylpenicillamine

SNO:

S-nitrosothiol

SNOC:

S-nitrosocysteine

VEGF:

vascular endothelial growth factor

References

  1. Palmer RM, Ferrige AG, Moncada S. Nitric oxide release accounts for the biological activity of endothelium-derived relaxing factor. Nature. 1987;327:524–6.

    Article  CAS  PubMed  Google Scholar 

  2. Knowles RG. Nitric oxide synthases. Biochem Soc Trans. 1996;24:875–8.

    CAS  PubMed  Google Scholar 

  3. Thomsen LL, Miles DW, Happerfield L, Bobrow LG, Knowles RG, Moncada S. Nitric oxide synthase activity in human breast cancer. Br J Cancer. 1995;72:41–4.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  4. Puhukka A, Kinnula V, Napankangas U, Saily M, Koistinen P, Paakko P, Soini Y. High expression of nitric oxide synthases is a favorable prognostic sign in non-small cell lung carcinoma. APMIS. 2003;111:1137–46.

    Article  Google Scholar 

  5. Bakshi A, Nag TC, Wadhwa S, Mahapatra AK, Sarkar C. The expression of nitric oxide synthases in human brain tumours and peritumoral areas. J Neuro Sci. 1998;155:196–203.

    Article  CAS  Google Scholar 

  6. Fukumura D, Kashiwagi S, Jain RK. The role of nitric oxide in tumour progression. Nat Rev Cancer. 2006;6:521–534.

    Article  CAS  PubMed  Google Scholar 

  7. Tse GMK, Wong FC, Tsang AKH, Lee CS, Lui PCW, Lo AWI, Law BKB, Scolyer RA, Putti TC. Stromal nitric oxide synthase (NOS) expression correlates with the grade of mammary phallodes tumour. J Clin Pathol. 2005;58:600–604.

    Google Scholar 

  8. Mocellin S, Bronte V, Nitti D. Nitric oxide a double edged sword in cancer biology: searching for therapeutic opportunities. Med Res Rev. 2007;27:317–352.

    Article  CAS  PubMed  Google Scholar 

  9. Heigold S, Sers C, Bechtel W, Ivanovas B, Schafer R, Bauer G. Nitric oxide mediates apoptosis induction selective in transformed fibroblasts compared to nontransformed fibroblasts. Carcinogenesis. 2002;23:929–41.

    Article  CAS  PubMed  Google Scholar 

  10. Ridnour LA, Thomas DD, Donzell D, Espey MG, Roberts DD, Wink DA, Isenberg JS. The biphasic nature of nitric oxide in carcinogenesis and tumour progression. Lancet Oncol. 2001;2:149–56.

    Article  Google Scholar 

  11. Thomas DD, Ridnour LA, Isenberg JS, Flores-Santana W, Switzer CH, Donzelli S, Hussain P, Vecoli C, Paolocci N, Ambs S, Colton CA, Harris CC, Roberts DD, Wink DA. The chemical biology of nitric oxide: impications in cellular signaling. Free Radic Biol Med. 2008;45:18–31.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  12. Iyer AKV, Azad N, Wang L, Rojanasakul Y. S-nitrosylation—how cancer cells say no to cell death. In: Bonavida B (ed.). Nitric Oxide (NO) and cancer, cancer drug delivery and development. New York: Springer Science + Business Media, LLC;2010.

    Google Scholar 

  13. Hess DT, Matsumoto A, Kim SO, Marshall HE, Stamler JS. Protein S-Nitrosylation: purview and parameters. Nat Rev Mol Cell Biol. 2005;6:150–66.

    Article  CAS  PubMed  Google Scholar 

  14. Stamler JS, Lamas S, Fang FC. Nitrosylation. the prototypic redox-based signaling mechanism. Cell. 2001;78:931–6.

    Article  Google Scholar 

  15. Lane P, Hao G, Gross SS. S-nitrosylation is emerging as a specific and fundamental posttranslational protein modification: head-to-head comparison with O-Phosphorylation. Sci STKE. 2001;86:RE1.

    Google Scholar 

  16. Azad N, Iyer AKV, Wang L, Lu Y, Medan D, Castranova V, Rojansakul Y. Nitric oxide-mediated Bcl-2 stabilization potentiates malignant transformation of human lung epithelial cells. Am J Repair Cell Mol Biol. 2010;42:578–85.

    Article  CAS  Google Scholar 

  17. Medan D, Luanpitpong S, Azad N, Wang L, Jiang BH, Davis ME, Barnett JB, Guo L, Rojanasakul Y. Multifunctional role of Bcl-2 in malignant transformation and tumorigenesis of Cr(VI)-transformed lung cells. PLoS ONE. 2012;7:e37045.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  18. Chaffer CL, Weinberg R. A perspective on cancer cell metastasis. Science. 2011;331:1559–64.

    Article  CAS  PubMed  Google Scholar 

  19. Fidler I. The pathogenesis of cancer metastasis: the ‘seed and soil’ hypothesis revisited. Nat Rev Cancer. 2003;3:453–8.

    Article  CAS  PubMed  Google Scholar 

  20. Talmadge JE, Fidler IJ. AACR centennial series: the biology of cancer metastasis: historical perspective. Cancer Res. 2010;70:5649–69.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  21. Stenner-Liewen F, Reed JC. Apoptosis and cancer: basic mechanisms and therapeutic opportunities in the postgenomic era. Cancer Res. 2003;63:263–8.

    CAS  Google Scholar 

  22. Frisch SM, Screaton RA. Anoikis mechanisms. Curr Opin Cell Biol. 2002;14:563–8.

    Article  Google Scholar 

  23. Simpson CD, Anyiwe K, Schimmer AD. Anoikis resistance and tumor metastasis. Cancer Lett. 2008;272:177–85.

    Article  CAS  PubMed  Google Scholar 

  24. Sakamoto S, Kyprianou N. Targeting anoikis resistance in prostate cancer metastasis. Mol Aspects Med. 2010;31:205–14.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  25. Khwaja A, Rodriguez-Viciana P, Wennstrom S., Warne PH, Downward1 J. Matrix adhesion and ras transformation both activate a phosphoinoistide 3-OH kinase and protein kinase B/Akt cellular survival pathway. EMBO J. 1997;16:2783–93.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  26. Numajiri N, Takasawa K, Nishiya T, Tanaka H, Ohno K, Hayakawa W, Asada M, Matsuda H, Azumi K, Kamata H, Nakamura T, Hara H, Minami M, Lipton SA, Uehara T. On–Off system for PI3-Kinase–Akt signaling through S-Nitrosylation of Phosphatase with sequence. Proc Natl Acad Sci USA. 2011;108:10349–54.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  27. Hollander MC, Blumenthal GM, Dennis PA. PTEN loss in the continuum of common cancers, rare syndromes and mouse models. Nat Rev Cancer. 2011;11:289–301.

    Article  CAS  PubMed  Google Scholar 

  28. Vitolo MI, Weiss MB, Szmacinski M, Tahir K, Waldman T, Park BH, Martin SS, Weber DJ, Bachman KE. Deletion of PTEN promotes tumorigenic signaling, resistance to anoikis, and altered response to chemotherapeutic agents in human mammary epithelial cells. Cancer Res. 2009;69:2875–83.

    Article  Google Scholar 

  29. Kwak YD, Ma T, Diao S, Zhang X, Chen Y, Hsu J, Lipton SA, Masliash E, Xu H, Liao FF. NO signaling and S-Nitrosylation regulate PTEN inhibition in neurodegeneration. Mol Neurodegener. 2010;5:49.

    Article  PubMed Central  PubMed  Google Scholar 

  30. Guicciardi ME, Gores GJ. Life and death by death receptors. FASEB J. 2009;23:1625–37.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  31. Tait SWG, Green DR. Mitochondria and cell death: outer membrane permeabilization and beyond. Nat Rev Mol Cell Biol. 2010;11:621–32.

    Article  CAS  PubMed  Google Scholar 

  32. Kim YN, Koo KH, Sung JY, Yun UJ, Kim H. Anoikis resistance: an essential prerequisite for tumor metastasis. Int J Cell Biol. 2012. doi:10.1155/2012/306879.

    Google Scholar 

  33. Mawji IA, Simpson CD, Hurren R, Gronda M, Williams MA, Filmus J, Jonkman J, Da Costa RS, Wilson BC, Thomas MP, Reed JC, Glinsky GV, Schimmer AD. Critical role for fas-associated death domain-like Interleukin-1-converting enzyme-like inhibitory protein in anoikis resistance and distant tumor formation. J Natl Cancer Inst. 2007;99:811–822.

    Article  CAS  PubMed  Google Scholar 

  34. Dingsheng L, Jie F, Weishan C. Bcl-2 and Caspase-8 related anoikis resistance in human osteosarcoma MG-63 cells. Cell Biol Int. 2008;32:1199–206.

    Article  Google Scholar 

  35. Joseph MG, Melinda MM, Tawnya LB, Subbulakshmi V, Richard JB. ERK/BCL-2 pathway in the resistance of pancreatic cancer to anoikis. J Surg Res. 2009;152:18–25.

    Article  Google Scholar 

  36. Chanvorachote P, Nimmannit U, Wang L, Stehlik C, Lu B, Azad N, Rojanasakul Y. Nitric oxide negatively regulates fas CD95-induced apoptosis through inhibition of ubiquitin-proteasome-mediated degradation of FLICE-inhibitory protein. J Biol Chem. 2005;280:42044–50.

    Article  CAS  PubMed  Google Scholar 

  37. Chanvorachote P, Nimmannit U, Stehlik C, Wang L, Jiang BH, Ongpipatanakul B, Rojanasakul Y. Nitric oxide regulates cell sensitivity to cisplatin-induced apoptosis through S-Nitrosylation and inhibition of Bcl-2 ubiquitination. Cancer Res. 2006;66:6353–60.

    Article  CAS  PubMed  Google Scholar 

  38. Azad N, Vallyathan V, Wang L, Tantishaiyakul V, Stehlik C, Leonard SS, Rojanasakul Y. S-nitrosylation of Bcl-2 inhibits its ubiquitin-proteasomal degradation. A novel antiapoptotic mechanism that suppresses apoptosis. J Biol Chem. 2006;281:34124–34.

    Article  CAS  PubMed  Google Scholar 

  39. Talbott SJ, Luanpitpong S, Stehlik C, Azad N, Iyer AK, Wang L, Rojansakul Y. S-Nitrosylation of FLICE-inhibitory protein determines its interaction with RIP1 and activation of NF-kB. Cell Cycle. 2014;13:1948–57.

    Google Scholar 

  40. Chunhacha P, Chanvorachote P. Roles of Caveolin-1 on anoikis resistance in non small cell lung cancer. Int J Physiol Pathophysiol Pharmacol. 2012;4:149–55.

    PubMed Central  CAS  PubMed  Google Scholar 

  41. Herzog M, Storch CH, Gut P, Kotlyar D, Fullekrug J, Ehehalt R, Haefeli WE, Weiss J. Knockdown of Caveolin-1 decreases activity of breast cancer resistance protein (BCRP/ABCG2) and increases chemotherapeutic sensitivity. Naunyn-Schmied Arch Pharmacol. 2011;383:1–11.

    Article  CAS  Google Scholar 

  42. Yang G, Truong L, Timme TL, Ren C, Wheeler TM, Park SH, Nasu Y, Bangma CH, Kattan MW, Scardino PT, Thompson TC. Elevated expression of caveolin is associated with prostate and breast cancer. Clin Cancer Res. 1998;4:1873–80.

    CAS  PubMed  Google Scholar 

  43. Ho CC, Huang PH, Huang HY, Chen YH, Yang PC, Hsu SM. Up-regulated Caveolin-1 accentuates the metastasis capability of lung adenocarcinoma by inducing filopodia formation. Am J Pathol. 2002;161:1647–56.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  44. Patlolla JM, Swamy MV, Raju J, Rao CV. Overexpression of Caveolin-1 in experimental colon adenocarcinomas and human colon cancer cell lines. Oncol Rep. 2004;115:719–24.

    Google Scholar 

  45. Ravid D, Maor S, Werner H, Liscovitch M. Caveolin-1 inhibits anoikis and promotes survival signaling in cancer cells. Adv Enzyme Regul. 2006;46:163–75.

    Article  CAS  PubMed  Google Scholar 

  46. Ravid D, Moar S, Werner H, Liscovitch M. Caveolin-1 inhibits cell detachment-induced P53 activation and anoikis by upregulation of insulin-like growth factor-1 receptor and signaling. Oncogene. 2005;17:1338–47.

    Article  Google Scholar 

  47. Li L, Ren CH, Tahir SA, Ren C, Thompson TC. Caveolin-1 maintains activated Akt in prostate cancer cells through scaffolding domain binding site interactions with and inhibition of serine/threonine protein phosphatases PP1 and PP2A. Mol Cell Biol. 2003;23:9389–404.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  48. Chunhacha P, Pongrakananon V, Rojanasakul Y, Chanvorachote P. Caveolin-1 regulates Mcl-1 stability and anoikis in lung carcinoma cells. Am J Physiol Cell Physiol. 2012;302:C1284–92.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  49. Chanvorachote P, Nimmannit U, Lu Y, Talbott S, Jiang BH, Rojanasakul Y. Nitric oxide regulates lung carcinoma cell anoikis through inhibition of ubiquitin-proteasomal degradation of caveolin-1. J Biol Chem. 2009;284:28476–84.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  50. Bravo-Cordero JJ, Hodgson L, Condeelis J. Directed cell invasion and migration during metastasis. Curr Opin Cell Biol. 2012;24:277–83.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  51. Luanpitpong S, Talbott S, Rojanasakul Y, Nimmannit U, Pongrakhananon V, Wang L, Chanvorachote P. Regulation of lung cancer cell migration and invasion by reactive oxygen species and caveolin-1. J Biol Chem. 2010;285:38832–40.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  52. Sanuphan A, Chunhacha P, Pongrakhananon V, Chanvorachote P. Long-Term nitric oxide exposure enhances lung cancer cell migration. BioMed Res Int. 2013;2013:186972.

    Article  PubMed Central  PubMed  Google Scholar 

  53. Irby RB, Yeatman TJ. Role of Src expression and activation in human cancer. Oncogene. 2000;19:5636–42.

    Article  CAS  PubMed  Google Scholar 

  54. Rahman MA, Senga T, Ito S, Hyodo T, Hasegawa H, Hamaguchi M. S-Nitrosylation at Cysteine 498 of c-Src tyrosine kinase regulates nitric oxide-mediated cell invasion. J Biol Chem. 2010;285:3806–14.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  55. Hoadley KA, Weigman VJ, Fan C, Sawyer LR, He X, Troester MA, Sartor CI, Rieger-House T, Bernard PS, Carey LA, Perou CM. EGFR Associated expression profiles vary with breast tumor subtype. BMC Genomics. 2007;8:258.

    Article  PubMed Central  PubMed  Google Scholar 

  56. Glynn SA, Boersma BJ, Dorsey TH, Yi M, Yfantis HG, Ridnour LA, Martin DN, Switzer CH, Hudson RS, Wink DA, Lee DH, Stephens RM, Ambs S. Increased NOS2 predicts poor survival in estrogen receptor-negative breast cancer patients. J Clin Invest. 2010;120:3843–54.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  57. Switzer CH, Glynn SA, Cheng RYS, Ridnour LA, Green JE, Ambs S, Wink DA. S-Nitrosylation of EGFR and src activates an oncogenic signaling network in human basal-like breast cancer. Mol Cancer Res. 2012;10:1203–15.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  58. Stites EC, Ravichandran KS. A systems perspective of ras signaling in cancer. Clin Cancer Res. 2009;15:1510–1513.

    Article  CAS  PubMed  Google Scholar 

  59. Campbell PM, Der CJ. Oncogenic ras and its role in tumor cell invasion and metastasis. Sem Cancer Biol. 2004;14:105–14.

    Article  CAS  Google Scholar 

  60. Raines K, Bonini MG, Campbell SL. Nitric oxide cell signaling: S-Nitrosation of Ras superfamily GTPases. Cardiovasc Res. 2007;75:229–39.

    Article  CAS  PubMed  Google Scholar 

  61. Lim KH, Ancrile BB, Kashatus DF, Counter CM. Tumor maintenance is mediated by eNOS. Nature. 2008;452:646–9.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  62. Raines K, Cao GL, Lee EK, Rosen GM, Shapiro P. Neuronal nitric oxide synthase-induced S-Nitrosylation of H-Ras inhibits calcium ionophore-mediated extracellular-signal-regulated kinase activity. Biochem J. 2006;397:329–36.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  63. Basu Roy UK Henkhaus RS Loupakis F Cremolini C Gerner EW Ignatenko NA. Caveolin-1 is a novel regulator of K-RAS-dependent migration in colon carcinogenesis. Int J Cancer. 2013;133:43–58.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  64. Shim E, Lee YS, Kim HY, Jeoung D. Down-regulation of c-FLIP increases reactive oxygen species, induces phosphorylation of serine/threonine kinase akt, and impairs motility of cancer cells. Biotechnol Lett. 2007;29:141–7.

    Article  CAS  PubMed  Google Scholar 

  65. Li M, Wang L, Liu H, Su B, Liu B, Lin W, Li Z, Chang L. Curcumin inhibits hela cell invasion and migration by decreasing inducible nitric oxide synthase. Nan Fang Yi Ke Da Xue Xue Bao (J South Med Univ). 2013;33:1752–6.

    CAS  Google Scholar 

  66. Dong J, Cheng M, Sun H. Function of inducible nitric oxide synthase in the regulation of cervical cancer cell proliferation and the expression of vascular endothelial growth factor. Mol Med Rep. 2014;9:583–9.

    CAS  PubMed  Google Scholar 

  67. Deryugina EI, Quigley JP. Matrix metalloproteinases and tumor metastasis. Cancer Metastasis Rev. 2006;25:9–34.

    Article  CAS  PubMed  Google Scholar 

  68. Roy R, Yang J, Moses MA. Matrix metalloproteinases as novel biomarkers and potential therapeutic targets in human cancer. J Clin Oncol. 2009;27:5287–97.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  69. Harris LK, McCormick J, Cartwright JE, Whitley GStJ, Dash PR. S-Nitrosylation of proteins at the leading edge of migrating trophoblasts by inducible nitric oxide synthase promotes trophoblast invasion. Exp Cell Res. 2008;314:1765–76.

    Article  CAS  PubMed  Google Scholar 

  70. Lamalice L, Le Boeuf F, Hout J. Endothelial cell migration during angiogenesis. Circ Res. 2007;100:782–94.

    Article  CAS  PubMed  Google Scholar 

  71. Dvorak HF. Vascular permeability factor, vascular endothelial growth factor: a critical cytokine in tumor angiogenesis and a potential target for diagnosis and therapy. J Clin Oncol. 2002;20:4368–80.

    Article  CAS  PubMed  Google Scholar 

  72. Lima B, Forrester MT, Hess DT, Stamler JS. S-Nitrosylation in cardiovascular signaling. Circ Res 2010;106:633–46.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  73. Pi X, Wu Y, Ferguson III JE, Portbury AL, Patterson C. SDF-1a stimulates JNK3 activity via eNOS-dependent nitrosylation of MKP7 to enhance endothelial migration. Proc Natl Acad Sci USA. 2009;106:5675–80.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  74. Thibeault S, Rautureau Y, Oubaha M, Faubert D, Wilkes BC, Delisle C, Gratton JP. S-Nitrosylation of b-catenin by eNOS-derived no promotes VEGF-induced endothelial cell permeability. Mol Cell. 2010;39:468–76.

    Article  CAS  PubMed  Google Scholar 

  75. Wang Z. Protein S-nitrosylation and cancer. Cancer Lett. 2012;320:123–29.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Institutes of Health Grants R01-HL095579 and R01-ES022968.

Conflicts of Interest

No potential conflicts of interest were disclosed.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yon Rojanasakul Phd .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Luanpitpong, S., Rojanasakul, Y. (2015). The Emerging Role of Protein S-Nitrosylation in Cancer Metastasis. In: Bonavida, B. (eds) Nitric Oxide and Cancer: Pathogenesis and Therapy. Springer, Cham. https://doi.org/10.1007/978-3-319-13611-0_8

Download citation

Publish with us

Policies and ethics