Skip to main content

Indentation Technique: Overview and Applications in Food Science

  • Chapter
  • First Online:
Food Nanoscience and Nanotechnology

Abstract

Indentation technique also known as instrumented indentation testing (IIT) has been widely used for characterization of mechanical properties of materials of different nature and different levels. This technique has been mostly used in the field of metallic materials, although in recent years its use has expanded to the biological area, and recently has been also used in the area of food science. The aim of this chapter is to show the general aspects of the indentation technique such as definition, measurement methods and data analysis, measured mechanical parameters, and examples of using the indentation technique in biological materials and specifically in food science. The main contribution of this chapter is to offer the reader a basic understanding of the technique and to show its scope for its possible application in the characterization of food mechanical properties.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Achrai B, Wagner HD (2013) Micro-structure and mechanical properties of the turtle carapace as a biological composite shield. Acta Biomater 9:5890–5902

    Article  Google Scholar 

  • Albert C, Jameson J, Toth JM, Smith P, Harris G (2013) Bone properties by nanoindentation in mild and severe osteogenesis imperfect. Clin Biomech (Bristol, Avon) 28:110–116

    Article  Google Scholar 

  • Alvarado-González JS, Chanona-Pérez JJ, Welti-Chanes JS, Calderón-Domínguez G, Arzate-Vázquez I, Pacheco-Alcalá SU, Garibay-Febles V, Gutiérrez-López GF (2012) Optical, microstructural, functional and nanomechanical properties of Aloe vera gel/gellan gum edible films. Rev Mex Ing Quím 11(2):193–210

    Google Scholar 

  • Aryaei A, Jayatissa AH, Jayasuriy AC (2012) Nano and micro mechanical properties of uncross-linked and cross-linked chitosan films. J Mech Behav Biomed Mater 5:82–89

    Article  CAS  Google Scholar 

  • Arzate-Vázquez I, Martínez-Rivas A, Méndez-Méndez JJ, Mendoza-Madrigal AG, Ponce-Reyes CE, Chanona-Pérez JJ (2011) Nanoindentation of edible films: a new complementary characterization of nanomechanical properties. In: Proceedings of the 6th International CIGRTechnical Symposium—Towards a sustainable food chain: food, process, bioprocessing and food quality management, Nantes, 18–20 April 2011

    Google Scholar 

  • Chena Z, Diebelsa S, Peterb NJ, Schneiderb AS (2013) Identification of finite viscoelasticity and adhesion effects in nanoindentation of a soft polymer by inverse method. Comput Mater Sci 72:127–139

    Article  Google Scholar 

  • Doerner MF, Nix WD (1986) A method for interpreting the data from depth-sensing indentation instruments. J Mater Res 1(4):601–609

    Article  Google Scholar 

  • Ebenstein DM, Pruitt LA (2006) Nanoindentation of biological materials. Nanotoday 1(3):26–33

    Article  Google Scholar 

  • Escamilla-García M, Calderón-Domínguez G, Chanona-Pérez JJ, Farrera-Rebollo RR, Andraca-Adame JA, Arzate-Vázquez I, Méndez-Méndez JV, Moreno-Ruiz LA (2013) Physical and structural characterisation of zein and chitosan edible films using nanotechnology tools. Int J Biol Macromol 61:196–203

    Article  Google Scholar 

  • Fischer-Cripps AC (2004a) A simple phenomenological approach to nanoindentation creep. Mater Sci Eng A Struct Mater 385:74–82

    Article  Google Scholar 

  • Fischer-Cripps AC (2006b) Critical review of analysis and interpretation of nanoindentation test data. Surf Coat Technol 200:4153–4165

    Article  CAS  Google Scholar 

  • Fischer-Cripps AC (2011c) Nanoindentation. Mechanical Engineering Series, vol 1, 3rd edn. Springer, New York

    Google Scholar 

  • Franke O, Göken M, Meyers MA, Durts K, Hodge AM (2011) Dynamic nanoindentation of articular porcine cartilage. Mater Sci Eng C Mater Biol Appl 31:789–795

    Article  CAS  Google Scholar 

  • Fung Ang S Scholz T Klocke A Schneider GA (2009) Determination of the elastic/plastic transition of human enamel by nanoindentation. Dent Mater 25:1403–1410

    Article  Google Scholar 

  • Hay JL, Pharr PM (2000) Instrumented indentation testing. ASM Handbook Vol 8. ASM International, Materials Park

    Google Scholar 

  • Isaksson H, Nagao S, Malkiewicz M, Julkunen P, Nowak R, Jurvelin JS (2010) Precision of nanoindentation protocols for measurement of viscoelasticity in cortical and trabecular bone. J Biomech 43:2410–2417

    Article  Google Scholar 

  • ISO. (2002) 14577-1,-2,-3. Metallic materials—Instrumented indentation test for hardness and materials parameters- Part 1: Test method, Part 2: Verification and calibration of testing machines, Part 3: Calibration of reference blocks. ISO, Geneve

    Google Scholar 

  • ISO. (2007) 14577-4. Metallic materials—Instrumented indentation test for hardness and materials parameters- Part 4: test method for metallic and nonmetallic coatings. ISO, Geneve.

    Google Scholar 

  • Juárez-de la Rosa BA Muñoz-Saldaña J Torres-Torres D Ardisson PL Alvardo-Gil JJ (2012) Nanoindentation characterization of the micro-lamellar arrangement of black coral skeleton. J Struct Biol 177: 349–357

    Article  Google Scholar 

  • Khon JC, Ebenstein DM (2013) Eliminating adhesion errors in nanoindentation of compliant polymers and hydrogels. J Mech Behav Biomed Mater 20: 316–326

    Article  Google Scholar 

  • Kruzic JJ, Kim DK, Koester KJ, Ritchie RO (2009) Indentation techniques for evaluating the fracture toughness of biomaterials and hard tissues. J Mech Behav Biomed Mater 2: 384–395

    Article  CAS  Google Scholar 

  • Lavorgna M, Piscitelli F, Mangiacapra P, Buonocore GG (2010) Study of the combined effect of both clay and glycerol plasticizer on the properties of chitosan films. Carbohydr Polym 82:291–298

    Article  CAS  Google Scholar 

  • Lin D, Zhao Y (2007) Innovations in the development and application of edible coatings for fresh and minimally processed fruits and vegetables. Compr Rev Food Sci Food Saf 6:60–76

    Article  CAS  Google Scholar 

  • Lisnyaka VV, Dubb SN, Stratiichukb DA, Stusa NV (2008) Nanoindentation study on viscoelasticity in cesium tungstophosphate glasses. Mater Lett 62:1905–1908

    Article  Google Scholar 

  • Lucca DA, Herrmann K, Klopfstein MJ (2010) Nanoindentation: measuring methods and applications. CIRP Ann Manuf Technol 59:803–819

    Article  Google Scholar 

  • Lukes J, Mares T, Nemecek J, Otahal S (2008) Examination of the microrheology disc by nanoindentation. IFMBE Proc 23:1792–1796

    Article  Google Scholar 

  • Oliver WC, Pharr GM (1992) An improve technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments. J Mater Res 7 (6):1564–1583

    Article  CAS  Google Scholar 

  • Severa L, Nemecek J, Nedomová S, Buchar J (2010) Determination of micromechanical properties of a hen×s eggshell by means of nanoindentation. J Food Eng 101:146–151

    Article  Google Scholar 

  • Tonj J, Zhao Y, Su J, Chen D (2007) Nanomechanical properties of the stigma of dragonfly Anax Parthenope Julius Brauer. J Mater Sci 42:2894–2898

    Article  Google Scholar 

  • Wu Z, Baker TA, Ovaert TC, Niebur GL (2011) The effect of holding time on nanoindentation measurements of creep in bone. J Biomech 44:1066–1072

    Article  Google Scholar 

  • Yuya PA, Amborn EK, Beatty MW, Turner JA (2010) Evaluating anisotropic properties in the porcine temporomandibular joint disc using nanoindentation. Ann Biomed Eng 38:2428–243

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This research was financed through the project 20131310 provided by Secretaría de Investigación y Posgrado (SIP) at the Instituto Politécnico Nacional (IPN).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Israel Arzate-Vázquez .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science + Business Media New York

About this chapter

Cite this chapter

Arzate-Vázquez, I., Chanona-Pérez, J., Rodríguez-Castro, G., Fuerte-Hernández, A., Méndez-Méndez, J., Gutiérrez-López, G. (2015). Indentation Technique: Overview and Applications in Food Science. In: Hernández-Sánchez, H., Gutiérrez-López, G. (eds) Food Nanoscience and Nanotechnology. Food Engineering Series. Springer, Cham. https://doi.org/10.1007/978-3-319-13596-0_6

Download citation

Publish with us

Policies and ethics