Skip to main content

Classification with Sign Random Projections

  • Conference paper
PRICAI 2014: Trends in Artificial Intelligence (PRICAI 2014)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 8862))

Included in the following conference series:

Abstract

Sign random projections (SRP) transform multi-dimensional vector into a binary string storing only the sign of the random projection values. Previous works showed that the obtained binary strings can be used to estimate the angle between vectors which can be used to speed up the nearest neighbors search. In this paper, we investigate their application to classification problem. We introduce an SRP classifier which works on these binary strings. The training procedure of this new classifier is very simple, yet producing correct classification result with high probability if the two classes are linearly separable.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Blum, A.: Random projection, margins, kernels, and feature-selection. In: Saunders, C., Grobelnik, M., Gunn, S., Shawe-Taylor, J. (eds.) SLSFS 2005. LNCS, vol. 3940, pp. 52–68. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  2. Candès, E.J., Tao, T.: Near-optimal signal recovery from random projections: Universal encoding strategies? IEEE Transactions on Information Theory 52(12), 5406–5425 (2006)

    Article  MATH  Google Scholar 

  3. Charikar, M.: Similarity Estimation Techniques from Rounding Algorithms. In: Proceedings on 34th Annual ACM Symposium on Theory of Computing (2002)

    Google Scholar 

  4. Dasgupta, S., Gupta, A.: An Elementary Proof of a Theorem of Johnson and Lindenstrauss. Random Structures & Algorithms 22(1), 60–65 (2002)

    Article  MathSciNet  Google Scholar 

  5. Donoho, D.: Compressed sensing. IEEE Transactions on Information Theory 52(4), 1289–1306 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  6. Fern, X.Z., Brodley, C.E.: Random projection for high dimensional data clustering: A cluster ensemble approach. In: Proceedings of the 20th International Conference, ICML (2003)

    Google Scholar 

  7. Freund, Y., Schapire, R.E.: A decision-theoretic generalization of on-line learning and an application to boosting. In: Vitányi, P.M.B. (ed.) EuroCOLT 1995. LNCS, vol. 904, pp. 23–37. Springer, Heidelberg (1995)

    Chapter  Google Scholar 

  8. Goemans, M.X., Williamson, D.P.: Improved approximation algorithms for maximum cut and satisfiability problems using semidefinite programming. Journal of the Association for Computing Machinery 42(6), 1115–1145 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  9. Indyk, P., Motwani, R.: Approximate nearest neighbors: Towards removing the curse of dimensionality. In: Proceedings of the 30th ACM Symposium on Theory of Computing (1998)

    Google Scholar 

  10. Kulis, B., Grauman, K.: Kernelized locality-sensitive hashing. IEEE Transactions on Pattern Analysis and Machine Intelligence, TPAMI (2011)

    Google Scholar 

  11. Li, P., Hastie, T.J., Church, K.W.: Improving Random Projections Using Marginal Information. In: Lugosi, G., Simon, H.U. (eds.) COLT 2006. LNCS (LNAI), vol. 4005, pp. 635–649. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  12. Marukatat, S., Methasate, I.: Fast nearest neighbor retrieval using randomized binary codes and approximate euclidean distance. Pattern Recognition Letters 34(9), 1101–1107 (2013)

    Article  Google Scholar 

  13. Shi, Q., Shen, C., Hill, R., van den Hengel, A.: Is margin preserved after random projection. In: Proceedings of the 29th International Conference on Machine Learning (ICML). icml.cc/Omnipress (2012)

    Google Scholar 

  14. Silpa-Anan, C., Hartley, R.: Optimised kd-trees for fast image descriptor matching. In: The International Conference on Computer Vision, CVPR (2008)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Marukatat, S. (2014). Classification with Sign Random Projections. In: Pham, DN., Park, SB. (eds) PRICAI 2014: Trends in Artificial Intelligence. PRICAI 2014. Lecture Notes in Computer Science(), vol 8862. Springer, Cham. https://doi.org/10.1007/978-3-319-13560-1_56

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-13560-1_56

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-13559-5

  • Online ISBN: 978-3-319-13560-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics