Skip to main content

Improved Parameterized Algorithms for Network Query Problems

  • Conference paper
  • First Online:
Parameterized and Exact Computation (IPEC 2014)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 8894))

Included in the following conference series:

Abstract

In the Partial Information Network Query (PINQ) problem, we are given a host graph \(H\), and a pattern \(\mathcal P\) whose topology is partially known. We seek a subgraph of \(H\) that resembles \(\mathcal{P}\). PINQ is a generalization of Subgraph Isomorphism, where the topology of \(\mathcal P\) is known, and Graph Motif, where the topology of \(\mathcal P\) is unknown. This generalization has important applications to bioinformatics, since it addresses the major challenge of analyzing biological networks in the absence of certain topological data. In this paper, we use a non-standard part-algebraic/part-combinatorial hybridization strategy to develop an exact parameterized algorithm as well as an FPT-approximation scheme for PINQ, allowing near resemblance between \(H\) and \(\mathcal P\). We thus unify and significantly improve previous results related to network queries.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The notation \(O^*\) hides factors polynomial in the input size.

  2. 2.

    Indeed, without the cycle requirement, Clique is the special case where \(t=k\), \(I_F=I_A=D=0\), \(\varDelta (p,h)=0\) for all \(p\in V_i, 1\le i\le t\) and \(h\in V\), and \(w(e)=1\) for all \(e\in E\).

  3. 3.

    If such solution exists, we can simply reject the input.

  4. 4.

    This can be also viewed as applying the color coding technique [1] using only two colors.

  5. 5.

    For such solutions, the time gained by handling \(A\) in a manner similar to \(P_A\) prevails the time required for the preceding selection step.

References

  1. Alon, N., Yuster, R., Zwick, U.: Color coding. J. Assoc. Comput. Mach. 42(4), 844–856 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  2. Betzler, N., Bevern, R., Fellows, M.R., Komusiewicz, C., Niedermeier, R.: Parameterized algorithmics for finding connected motifs in biological networks. IEEE/ACM Trans. Comput. Biol. Bioinf. 8(5), 1296–1308 (2011)

    Article  Google Scholar 

  3. Betzler, N., Fellows, M.R., Komusiewicz, C., Niedermeier, R.: Parameterized algorithms and hardness results for some graph motif problems. In: Ferragina, P., Landau, G.M. (eds.) CPM 2008. LNCS, vol. 5029, pp. 31–43. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  4. Bj\({\ddot{\rm o}}\)rklund, A.: Determinant sums for undirected hamiltonicity. In: FOCS, pp. 173–182 (2010)

    Google Scholar 

  5. Bj\({\ddot{\rm o}}\)rklund, A., Husfeldt, T., Kaski, P., Koivisto, M.: Narrow sieves for parameterized paths and packings. CoRR (2010). arxiv:1007.1161

  6. Bj\({\ddot{\rm o}}\)rklund, A., Kaski, P., Kowalik, L.: Probably optimal graph motifs. In: STACS, pp. 20–31 (2013)

    Google Scholar 

  7. Blin, G., Sikora, F., Vialette, S.: Querying graphs in protein-protein interactions networks using feedback vertex set. IEEE/ACM Trans. Comput. Biol. Bioinf. 7(4), 628–635 (2010)

    Article  Google Scholar 

  8. Bodlaender, H.L.: A linear-time algorithm for finding tree-decompositions of small treewidth. SIAM J. Comput. 25(6), 1305–1317 (1996)

    Google Scholar 

  9. Bodlaender, H.L., Koster, A.M.C.A.: Combinatorial optimization on graphs of bounded treewidth. Comput. J. 51(3), 255–269 (2008)

    Article  MathSciNet  Google Scholar 

  10. Bruckner, S., Hüffner, F., Karp, R.M., Shamir, R., Sharan, R.: Topology-free querying of protein interaction networks. J. Comput. Biol. 17(3), 237–252 (2010)

    Article  MathSciNet  Google Scholar 

  11. Chen, J., Kneis, J., Lu, S., Molle, D., Richter, S., Rossmanith, P., Sze, S., Zhang, F.: Randomized divide-and-conquer: Improved path, matching, and packing algorithms. SIAM J. Comput. 38(6), 2526–2547 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  12. Dondi, R., Fertin, G., Vialette, S.: Maximum motif problem in vertex-colored graphs. In: CPM, pp. 388–401 (2011)

    Google Scholar 

  13. Dost, B., Shlomi, T., Gupta, N., Ruppin, E., Bafna, V., Sharan, R.: Qnet: a tool for querying protein interaction networks. J. Comput. Biol. 15(7), 913–925 (2008)

    Article  MathSciNet  Google Scholar 

  14. Downey, R.G., Fellows, M.R.: Fixed-parameter tractability and completeness II: on completeness for W[1]. Theor. Comput. Sci. 141(1–2), 109–131 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  15. Fellows, M.R., Fertin, G., Hermelin, D., Vialette, S.: Upper and lower bounds for finding connected motifs in vertex-colored graphs. J. Com. Sys. Sci. 77(4), 799–811 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  16. Fionda, V., Palopoli, L.: Biological network querying techniques: Analysis and comparison. J. Comput. Biol. 18(4), 595–625 (2011)

    Article  MathSciNet  Google Scholar 

  17. Fomin, F.V., Lokshtanov, D., Raman, V., Saurabh, S., Rao, B.V.R.: Faster algorithms for finding and counting subgraphs. J. Com. Sys. Sci. 78(3), 698–706 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  18. Garey, M.R., Johnson, D.S.: Computers And Intractability: A Guide To The Theory Of Np-Completeness. W.H. Freeman, New York (1979)

    MATH  Google Scholar 

  19. Guillemot, S., Sikora, F.: Finding and counting vertex-colored subtrees. Algorithmica 65(4), 828–844 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  20. Hüffner, F., Wernicke, S., Zichner, T.: Algorithm engineering for color-coding with applications to signaling pathway detection. Algorithmica 52(2), 114–132 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  21. Koutis, I.: Faster algebraic algorithms for path and packing problems. In: Aceto, L., Damgård, I., Goldberg, L.A., Halldórsson, M.M., Ingólfsdóttir, A., Walukiewicz, I. (eds.) ICALP 2008, Part I. LNCS, vol. 5125, pp. 575–586. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  22. Koutis, I.: Constrained multilinear detection for faster functional motif discovery. Inf. Process. Lett. 112(22), 889–892 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  23. Koutis, I., Williams, R.: Limits and applications of group algebras for parameterized problems. In: Albers, S., Marchetti-Spaccamela, A., Matias, Y., Nikoletseas, S., Thomas, W. (eds.) ICALP 2009, Part I. LNCS, vol. 5555, pp. 653–664. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  24. Lacroix, V., Fernandes, C.G., Sagot, M.F.: Motif search in graphs: Application to metabolic networks. IEEE/ACM Trans. Comput. Biol. Bioinf. 3(4), 360–368 (2006)

    Article  Google Scholar 

  25. Misra, N., Philip, G., Raman, V., Saurabh, S., Sikdar, S.: FPT algorithms for connected feedback vertex set. J. Comb. Optim. 24(2), 131–146 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  26. Pinter, R.Y., Rokhlenko, O., Yeger-Lotem, E., Ziv-Ukelson, M.: Alignment of metabolic pathways. Bioinformatics 21(16), 3401–3408 (2005)

    Article  Google Scholar 

  27. Pinter, R.Y., Zehavi, M.: Partial information network queries. In: Lecroq, T., Mouchard, L. (eds.) IWOCA 2013. LNCS, vol. 8288, pp. 362–375. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  28. Pinter, R.Y., Zehavi, M.: Algorithms for topology-free and alignment network queries. J. Discrete Algorithms 27, 29–53 (2014)

    Article  MATH  MathSciNet  Google Scholar 

  29. Schwartz, J.T.: Fast probabilistic algorithms for verification of polynomial identities. J. Assoc. Comput. Mach. 27(4), 701–717 (1980)

    Article  MATH  MathSciNet  Google Scholar 

  30. Shlomi, T., Segal, D., Ruppin, E., Sharan, R.: Qpath: a method for querying pathways in a protein-protein interaction networks. BMC Bioinform. 7, 199 (2006)

    Article  Google Scholar 

  31. Sikora, F.: An (almost complete) state of the art around the graph motif problem. Universit\({\acute{\rm e}}\) Paris-Est Technical reports (2012)

    Google Scholar 

  32. Zippel, R.: Probabilistic algorithms for sparse polynomials. In: Ng, K.W. (ed.) EUROSAM 1979. LNCS, vol. 72, pp. 216–226. Springer, Heidelberg (1979)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Meirav Zehavi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Pinter, R.Y., Shachnai, H., Zehavi, M. (2014). Improved Parameterized Algorithms for Network Query Problems. In: Cygan, M., Heggernes, P. (eds) Parameterized and Exact Computation. IPEC 2014. Lecture Notes in Computer Science(), vol 8894. Springer, Cham. https://doi.org/10.1007/978-3-319-13524-3_25

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-13524-3_25

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-13523-6

  • Online ISBN: 978-3-319-13524-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics