Skip to main content

Polymeric Ion Gels: Preparation Methods, Characterization, and Applications

  • Chapter
Electrochemistry in Ionic Liquids

Abstract

In this chapter, we have summarized the preparation methods, properties, and applications of ion gels. Ion gels or ionogels are a new type of gels where the liquid phase, percolating throughout the solid phase, is an ionic liquid. Ion gels are attractive materials especially due to its good ionic conductivity, electrochemical and chemical stability, nonflammability, thermal stability, negligible vapor pressure, solid-like behavior, and tunable flexibility. Inorganic or polymeric materials can be used as gelators in combination with ionic liquids to synthesize ion gels. However, this chapter is mainly focused in the development of ion gels using polymeric materials such as triblock copolymers, fluorinated polymers, or poly(ionic liquids) as gelators.

In the first part of the chapter, the different preparation methods of ion gels such as swelling a polymer in an ionic liquid, solution casting, or direct polymerization of monomers in an ionic liquid were described, whereas in the second part of the chapter, the applications of ion gels were reported. Good ionic conductivity makes them suitable for electrolytic membranes, which can provide also wide electrochemical window, flexibility, ease of handling, and reliability to the electrolyte. Therefore, many examples have been recently reported about the development of energy storage and about production devices based on ion gels, such as batteries, fuel cells, solar cells, supercapacitors, or actuators. The more recent use of ion gels in other applications, such as sensors, optoelectronics or bioelectronics, catalytical membranes, separation membranes, and in drug release, was finally discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Lodge TP (2008) A unique platform for materials design. Science 321(5885):50–51. doi:10.1126/science.1159652

    CAS  Google Scholar 

  2. Le Bideau J, Viau L, Vioux A (2011) Ionogels, ionic liquid based hybrid materials. Chem Soc Rev 40(2):907–925. doi:10.1039/C0CS00059K

    Google Scholar 

  3. MacFarlane DR, Forsyth M, Howlett PC, Pringle JM, Sun J, Annat G, Neil W, Izgorodina EI (2007) Ionic liquids in electrochemical devices and processes: managing interfacial electrochemistry. Acc Chem Res 40(11):1165–1173. doi:10.1021/ar7000952

    CAS  Google Scholar 

  4. Welton T (1999) Room-temperature ionic liquids. Solvents for synthesis and catalysis. Chem Rev 99(8):2071–2084. doi:10.1021/cr980032t

    CAS  Google Scholar 

  5. Wasserscheid P, Welton T (2008) Ionic liquids in synthesis, 2nd edn. Wiley, Weinheim

    Google Scholar 

  6. Piepenbrock M-OM, Lloyd GO, Clarke N, Steed JW (2009) Metal- and anion-binding supramolecular gels. Chem Rev 110(4):1960–2004. doi:10.1021/cr9003067

    Google Scholar 

  7. Weiss RG, Terech P (2006) Molecular gels. Materials with self-assembled fibrillar networks. Springer, Netherlands

    Google Scholar 

  8. Flory PJ (1974) Introductory lecture. Faraday Discuss Chem Soc 57:7–18. doi:10.1039/DC9745700007

    CAS  Google Scholar 

  9. Jordon Lloyd D (1926) Colloid chemistry. The Chemical Catalogue Co., New York, NY

    Google Scholar 

  10. Steed JW (2011) Supramolecular gel chemistry: developments over the last decade. Chem Commun 47(5):1379–1383. doi:10.1039/C0CC03293J

    CAS  Google Scholar 

  11. Israelachvili JN (1991) Intermolecular and surface forces. Academic, New York, NY

    Google Scholar 

  12. Terech P, Weiss RG (1997) Low molecular mass gelators of organic liquids and the properties of their gels. Chem Rev 97(8):3133–3160. doi:10.1021/cr9700282

    CAS  Google Scholar 

  13. Estroff LA, Hamilton AD (2004) Water gelation by small organic molecules. Chem Rev 104(3):1201–1218. doi:10.1021/cr0302049

    CAS  Google Scholar 

  14. Ye Y-S, Rick J, Hwang B-J (2013) Ionic liquid polymer electrolytes. J Mater Chem A 1(8):2719–2743. doi:10.1039/C2TA00126H

    CAS  Google Scholar 

  15. Izák P, Hovorka Š, Bartovský T, Bartovská L, Crespo JG (2007) Swelling of polymeric membranes in room temperature ionic liquids. J Membr Sci 296(1–2):131–138. doi:10.1016/j.memsci.2007.03.022

    Google Scholar 

  16. Xing C, Zheng X, Xu L, Jia J, Ren J, Li Y (2014) Toward an optically transparent, antielectrostatic, and robust polymer composite: morphology and properties of polycarbonate/ionic liquid composites. Ind Eng Chem Res 53(11):4304–4311. doi:10.1021/ie404096b

    CAS  Google Scholar 

  17. Doyle M, Choi SK, Proulx G (2000) High-temperature proton conducting membranes based on perfluorinated ionomer membrane-ionic liquid composites. J Electrochem Soc 147(1):34–37. doi:10.1149/1.1393153

    CAS  Google Scholar 

  18. Vidinha P, Lourenco NMT, Pinheiro C, Bras AR, Carvalho T, Santos-Silva T, Mukhopadhyay A, Romao MJ, Parola J, Dionisio M, Cabral JMS, Afonso CAM, Barreiros S (2008) Ion jelly: a tailor-made conducting material for smart electrochemical devices. Chem Commun 30(44):5842–5844. doi:10.1039/B811647D

    Google Scholar 

  19. Singh T, Trivedi TJ, Kumar A (2010) Dissolution, regeneration and ion-gel formation of agarose in room-temperature ionic liquids. Green Chem 12(6):1029–1035. doi:10.1039/B927589D

    CAS  Google Scholar 

  20. He Y, Lodge TP (2007) A thermoreversible ion gel by triblock copolymer self-assembly in an ionic liquid. Chem Commun 14(26):2732–2734. doi:10.1039/B704490A

    Google Scholar 

  21. Lee KH, Zhang S, Gu Y, Lodge TP, Frisbie CD (2013) Transfer printing of thermoreversible ion gels for flexible electronics. ACS Appl Mater Interfaces 5(19):9522–9527. doi:10.1021/am402200n

    CAS  Google Scholar 

  22. Liu L, Yang P, Li L, Cui Y, An M (2012) Application of bis(trifluoromethanesulfonyl)imide lithium–N-methyl-N-butylpiperidinium-bis(trifluoromethanesulfonyl)imide–poly(vinylidene difluoride-co-hexafluoropropylene) ionic liquid gel polymer electrolytes in Li/LiFePO4 batteries at different temperatures. Electrochim Acta 85:49–56. doi:10.1016/j.electacta.2012.08.066

    CAS  Google Scholar 

  23. Pandey GP, Hashmi SA (2009) Experimental investigations of an ionic-liquid-based, magnesium ion conducting, polymer gel electrolyte. J Power Sources 187(2):627–634. doi:10.1016/j.jpowsour.2008.10.112

    CAS  Google Scholar 

  24. He Y, Boswell PG, Bühlmann P, Lodge TP (2006) Ion gels by self-assembly of a triblock copolymer in an ionic Liquid†. J Phys Chem B 111(18):4645–4652. doi:10.1021/jp064574n

    Google Scholar 

  25. Hoarfrost ML, Segalman RA (2011) Ionic conductivity of nanostructured block copolymer/ionic liquid membranes. Macromolecules 44(13):5281–5288. doi:10.1021/ma200060g

    CAS  Google Scholar 

  26. Suleman M, Kumar Y, Hashmi SA (2013) Structural and electrochemical properties of succinonitrile-based gel polymer electrolytes: role of ionic liquid addition. J Phys Chem B 117(24):7436–7443. doi:10.1021/jp312358x

    CAS  Google Scholar 

  27. Shalu CSK, Singh RK, Chandra S (2012) Thermal stability, complexing behavior, and ionic transport of polymeric gel membranes based on polymer PVdF-HFP and ionic liquid, [BMIM][BF4]. J Phys Chem B 117(3):897–906. doi:10.1021/jp307694q

    Google Scholar 

  28. Marcilla R, Alcaide F, Sardon H, Pomposo JA, Pozo-Gonzalo C, Mecerreyes D (2006) Tailor-made polymer electrolytes based upon ionic liquids and their application in all-plastic electrochromic devices. Electrochem Commun 8(3):482–488. doi:10.1016/j.elecom.2006.01.013

    CAS  Google Scholar 

  29. Jiang J, Gao D, Li Z, Su G (2006) Gel polymer electrolytes prepared by in situ polymerization of vinyl monomers in room-temperature ionic liquids. React Funct Polym 66(10):1141–1148. doi:10.1016/j.reactfunctpolym.2006.02.004

    CAS  Google Scholar 

  30. Noda A, Watanabe M (2000) Highly conductive polymer electrolytes prepared by in situ polymerization of vinyl monomers in room temperature molten salts. Electrochim Acta 45(8–9):1265–1270. doi:10.1016/S0013-4686(99)00330-8

    CAS  Google Scholar 

  31. Susan MABH, Kaneko T, Noda A, Watanabe M (2005) Ion gels prepared by in situ radical polymerization of vinyl monomers in an ionic liquid and their characterization as polymer electrolytes. J Am Chem Soc 127(13):4976–4983. doi:10.1021/ja045155b

    CAS  Google Scholar 

  32. Nakajima H, Ohno H (2005) Preparation of thermally stable polymer electrolytes from imidazolium-type ionic liquid derivatives. Polymer 46(25):11499–11504. doi:10.1016/j.polymer.2005.10.005

    CAS  Google Scholar 

  33. Isik M, Gracia R, Kollnus LC, Tomé LC, Marrucho IM, Mecerreyes D (2013) Cholinium-based poly(ionic liquid)s: synthesis, characterization, and application as biocompatible ion gels and cellulose coatings. ACS Macro Lett 2(11):975–979. doi:10.1021/mz400451g

    CAS  Google Scholar 

  34. Jana S, Parthiban A, Chai CLL (2010) Transparent, flexible and highly conductive ion gels from ionic liquid compatible cyclic carbonate network. Chem Commun 46(9):1488–1490. doi:10.1039/B921517D

    CAS  Google Scholar 

  35. Vioux A, Viau L, Volland S, Le Bideau J (2010) Use of ionic liquids in sol-gel; ionogels and applications. C R Chim 13(1–2):242–255. doi:10.1016/j.crci.2009.07.002

    CAS  Google Scholar 

  36. Gayet F, Viau L, Leroux F, Monge S, Robin J-J, Vioux A (2010) Polymer nanocomposite ionogels, high-performance electrolyte membranes. J Mater Chem 20(42):9456–9462. doi:10.1039/C000033G

    CAS  Google Scholar 

  37. Noor SAM, Bayley PM, Forsyth M, MacFarlane DR (2013) Ionogels based on ionic liquids as potential highly conductive solid state electrolytes. Electrochim Acta 91:219–226. doi:10.1016/j.electacta.2012.11.113

    CAS  Google Scholar 

  38. Imaizumi S, Kokubo H, Watanabe M (2011) Polymer actuators using ion-gel electrolytes prepared by self-assembly of ABA-triblock copolymers. Macromolecules 45(1):401–409. doi:10.1021/ma2022138

    Google Scholar 

  39. Appetecchi GB, Kim GT, Montanino M, Carewska M, Marcilla R, Mecerreyes D, De Meatza I (2010) Ternary polymer electrolytes containing pyrrolidinium-based polymeric ionic liquids for lithium batteries. J Power Sources 195(11):3668–3675. doi:10.1016/j.jpowsour.2009.11.146

    CAS  Google Scholar 

  40. Yang P, Liu L, Li L, Hou J, Xu Y, Ren X, An M, Li N (2014) Gel polymer electrolyte based on polyvinylidenefluoride-co-hexafluoropropylene and ionic liquid for lithium ion battery. Electrochim Acta 115:454–460. doi:10.1016/j.electacta.2013.10.202

    CAS  Google Scholar 

  41. Pandey GP, Hashmi SA (2013) Solid-state supercapacitors with ionic liquid based gel polymer electrolyte: effect of lithium salt addition. J Power Sources 243:211–218. doi:10.1016/j.jpowsour.2013.05.183

    CAS  Google Scholar 

  42. Winterton N (2006) Solubilization of polymers by ionic liquids. J Mater Chem 16(44):4281–4293. doi:10.1039/B610143G

    CAS  Google Scholar 

  43. Ji N, Matsumoto H, Yoshida M (2012) Highly efficient and specific gelation of ionic liquids by polymeric electrolytes to form ionogels with substantially high gel–sol transition temperatures and rheological properties like self-standing ability and rapid recovery. ACS Macro Lett 1(9):1108–1112. doi:10.1021/mz3002808

    Google Scholar 

  44. Chen B, Lu JJ, Yang CH, Yang JH, Zhou J, Chen YM, Suo Z (2014) Highly stretchable and transparent ionogels as nonvolatile conductors for dielectric elastomer transducers. ACS Appl Mater Interfaces. doi:10.1021/am501130t

    Google Scholar 

  45. Saricilar S, Antiohos D, Shu K, Whitten PG, Wagner K, Wang C, Wallace GG (2013) High strain stretchable solid electrolytes. Electrochem Commun 32:47–50. doi:10.1016/j.elecom.2013.03.035

    CAS  Google Scholar 

  46. He Y, Lodge TP (2007) Thermoreversible ion gels with tunable melting temperatures from triblock and pentablock copolymers. Macromolecules 41(1):167–174. doi:10.1021/ma702014z

    Google Scholar 

  47. Miranda DF, Versek C, Tuominen MT, Russell TP, Watkins JJ (2013) Cross-linked block copolymer/ionic liquid self-assembled blends for polymer gel electrolytes with high ionic conductivity and mechanical strength. Macromolecules 46(23):9313–9323. doi:10.1021/ma401302r

    CAS  Google Scholar 

  48. Virgili JM, Hoarfrost ML, Segalman RA (2010) Effect of an ionic liquid solvent on the phase behavior of block copolymers. Macromolecules 43(12):5417–5423. doi:10.1021/ma902804e

    CAS  Google Scholar 

  49. McIntosh LD, Kubo T, Lodge TP (2014) Morphology, modulus, and conductivity of a triblock terpolymer/ionic liquid electrolyte membrane. Macromolecules 47(3):1090–1098. doi:10.1021/ma4022373

    CAS  Google Scholar 

  50. Roberts AD, Li X, Zhang H (2014) Porous carbon spheres and monoliths: morphology control, pore size tuning and their applications as Li-ion battery anode materials. Chem Soc Rev. doi:10.1039/C4CS00071D

    Google Scholar 

  51. Winter M, Brodd RJ (2004) What are batteries, fuel cells, and supercapacitors? Chem Rev 104(10):4245–4270. doi:10.1021/cr020730k

    CAS  Google Scholar 

  52. Fernicola A, Weise FC, Greenbaum SG, Kagimoto J, Scrosati B, Soleto A (2009) Lithium-ion-conducting electrolytes: from an ionic liquid to the polymer membrane. J Electrochem Soc 156(7):A514–A520. doi:10.1149/1.3122885

    CAS  Google Scholar 

  53. Guerfi A, Dontigny M, Kobayashi Y, Vijh A, Zaghib K (2009) Investigations on some electrochemical aspects of lithium-ion ionic liquid/gel polymer battery systems. J Solid State Electrochem 13(7):1003–1014. doi:10.1007/s10008-008-0697-x

    CAS  Google Scholar 

  54. Fergus JW (2010) Ceramic and polymeric solid electrolytes for lithium-ion batteries. J Power Sources 195(15):4554–4569. doi:10.1016/j.jpowsour.2010.01.076

    CAS  Google Scholar 

  55. Li M, Yang L, Fang S, Dong S, Jin Y, S-i H, Tachibana K (2011) Li/LiFePO4 batteries with gel polymer electrolytes incorporating a guanidinium-based ionic liquid cycled at room temperature and 50 °C. J Power Sources 196(15):6502–6506. doi:10.1016/j.jpowsour.2011.03.071

    CAS  Google Scholar 

  56. Lewandowski A, Swiderska-Mocek A, Waliszewski L (2013) Li+ conducting polymer electrolyte based on ionic liquid for lithium and lithium-ion batteries. Electrochim Acta 92:404–411. doi:10.1016/j.electacta.2013.01.028

    CAS  Google Scholar 

  57. Hofmann A, Schulz M, Hanemann T (2013) Gel electrolytes based on ionic liquids for advanced lithium polymer batteries. Electrochim Acta 89:823–831. doi:10.1016/j.electacta.2012.10.144

    CAS  Google Scholar 

  58. Li L, Wang J, Yang P, Guo S, Wang H, Yang X, Ma X, Yang S, Wu B (2013) Preparation and characterization of gel polymer electrolytes containing N-butyl-N-methylpyrrolidinium bis(trifluoromethanesulfonyl) imide ionic liquid for lithium ion batteries. Electrochim Acta 88:147–156. doi:10.1016/j.electacta.2012.10.018

    CAS  Google Scholar 

  59. Kim J-K, Niedzicki L, Scheers J, Shin C-R, Lim D-H, Wieczorek W, Johansson P, Ahn J-H, Matic A, Jacobsson P (2013) Characterization of N-butyl-N-methyl-pyrrolidinium bis(trifluoromethanesulfonyl)imide-based polymer electrolytes for high safety lithium batteries. J Power Sources 224:93–98. doi:10.1016/j.jpowsour.2012.09.029

    CAS  Google Scholar 

  60. Raghavan P, Zhao X, Choi H, Lim D-H, Kim J-K, Matic A, Jacobsson P, Nah C, Ahn J-H (2014) Electrochemical characterization of poly(vinylidene fluoride-co-hexafluoro propylene) based electrospun gel polymer electrolytes incorporating room temperature ionic liquids as green electrolytes for lithium batteries. Solid State Ion 262:77–82. doi:10.1016/j.ssi.2013.10.044

    CAS  Google Scholar 

  61. Pont A-L, Marcilla R, De Meatza I, Grande H, Mecerreyes D (2009) Pyrrolidinium-based polymeric ionic liquids as mechanically and electrochemically stable polymer electrolytes. J Power Sources 188(2):558–563. doi:10.1016/j.jpowsour.2008.11.115

    CAS  Google Scholar 

  62. Li M, Wang L, Yang B, Du T, Zhang Y (2014) Facile preparation of polymer electrolytes based on the polymerized ionic liquid poly((4-vinylbenzyl)trimethylammonium bis(trifluoromethanesulfonylimide)) for lithium secondary batteries. Electrochim Acta 123:296–302. doi:10.1016/j.electacta.2013.12.179

    CAS  Google Scholar 

  63. Li M, Yang B, Wang L, Zhang Y, Zhang Z, Fang S, Zhang Z (2013) New polymerized ionic liquid (PIL) gel electrolyte membranes based on tetraalkylammonium cations for lithium ion batteries. J Membr Sci 447:222–227. doi:10.1016/j.memsci.2013.07.007

    CAS  Google Scholar 

  64. Shin JH, Henderson WA, Appetecchi GB, Alessandrini F, Passerini S (2005) Recent developments in the ENEA lithium metal battery project. Electrochim Acta 50(19):3859–3865. doi:10.1016/j.electacta.2005.02.049

    CAS  Google Scholar 

  65. Wetjen M, Kim G-T, Joost M, Winter M, Passerini S (2013) Temperature dependence of electrochemical properties of cross-linked poly(ethylene oxide)–lithium bis(trifluoromethanesulfonyl)imide–N-butyl-N-methylpyrrolidinium bis(trifluoromethanesulfonyl)imide solid polymer electrolytes for lithium batteries. Electrochim Acta 87:779–787. doi:10.1016/j.electacta.2012.09.034

    CAS  Google Scholar 

  66. Liao C, Sun X-G, Dai S (2013) Crosslinked gel polymer electrolytes based on polyethylene glycol methacrylate and ionic liquid for lithium ion battery applications. Electrochim Acta 87:889–894. doi:10.1016/j.electacta.2012.10.027

    CAS  Google Scholar 

  67. Stepniak I (2014) Compatibility of poly(bisAEA4)-LiTFSI–MPPipTFSI ionic liquid gel polymer electrolyte with Li4Ti5O12 lithium ion battery anode. J Power Sources 247:112–116. doi:10.1016/j.jpowsour.2013.08.080

    CAS  Google Scholar 

  68. Liao Y, Sun C, Hu S, Li W (2013) Anti-thermal shrinkage nanoparticles/polymer and ionic liquid based gel polymer electrolyte for lithium ion battery. Electrochim Acta 89:461–468. doi:10.1016/j.electacta.2012.11.095

    CAS  Google Scholar 

  69. Rao M, Geng X, Liao Y, Hu S, Li W (2012) Preparation and performance of gel polymer electrolyte based on electrospun polymer membrane and ionic liquid for lithium ion battery. J Membr Sci 399–400:37–42. doi:10.1016/j.memsci.2012.01.021

    Google Scholar 

  70. Weber AZ, Newman J (2004) Modeling transport in polymer-electrolyte fuel cells. Chem Rev 104(10):4679–4726. doi:10.1021/cr020729l

    CAS  Google Scholar 

  71. Devanathan R (2008) Recent developments in proton exchange membranes for fuel cells. Energy Environ Sci 1(1):101–119. doi:10.1039/B808149M

    CAS  Google Scholar 

  72. Hasegawa T, Béléké AB, Mizuhata M (2013) Membrane modification by liquid phase deposition using small amount of TiO2 for high-temperature operation of polymer electrolyte fuel cells. J Power Sources 233:148–156. doi:10.1016/j.jpowsour.2013.01.118

    CAS  Google Scholar 

  73. Schauer J, Sikora A, Plíšková M, Mališ J, Mazúr P, Paidar M, Bouzek K (2011) Ion-conductive polymer membranes containing 1-butyl-3-methylimidazolium trifluoromethanesulfonate and 1-ethylimidazolium trifluoromethanesulfonate. J Membr Sci 367(1–2):332–339. doi:10.1016/j.memsci.2010.11.018

    CAS  Google Scholar 

  74. Rana UA, Forsyth M, MacFarlane DR, Pringle JM (2012) Toward protic ionic liquid and organic ionic plastic crystal electrolytes for fuel cells. Electrochim Acta 84:213–222. doi:10.1016/j.electacta.2012.03.058

    CAS  Google Scholar 

  75. Kreuer KD (2001) On the development of proton conducting polymer membranes for hydrogen and methanol fuel cells. J Membr Sci 185(1):29–39. doi:10.1016/S0376-7388(00)00632-3

    CAS  Google Scholar 

  76. Díaz M, Ortiz A, Vilas M, Tojo E, Ortiz I (2014) Performance of PEMFC with new polyvinyl-ionic liquids based membranes as electrolytes. Int J Hydrog Energy 39(8):3970–3977. doi:10.1016/j.ijhydene.2013.04.155

    Google Scholar 

  77. Mališ J, Mazúr P, Schauer J, Paidar M, Bouzek K (2013) Polymer-supported 1-butyl-3-methylimidazolium trifluoromethanesulfonate and 1-ethylimidazolium trifluoromethanesulfonate as electrolytes for the high temperature PEM-type fuel cell. Int J Hydrog Energy 38(11):4697–4704. doi:10.1016/j.ijhydene.2013.01.126

    Google Scholar 

  78. Lee S-Y, Yasuda T, Watanabe M (2010) Fabrication of protic ionic liquid/sulfonated polyimide composite membranes for non-humidified fuel cells. J Power Sources 195(18):5909–5914. doi:10.1016/j.jpowsour.2009.11.045

    CAS  Google Scholar 

  79. Yasuda T, S-i N, Honda Y, Kinugawa K, Lee S-Y, Watanabe M (2012) Effects of polymer structure on properties of sulfonated polyimide/protic ionic liquid composite membranes for nonhumidified fuel cell applications. ACS Appl Mater Interfaces 4(3):1783–1790. doi:10.1021/am300031k

    CAS  Google Scholar 

  80. Fernicola A, Navarra M, Panero S (2008) Aprotic ionic liquids as electrolyte components in protonic membranes. J Appl Electrochem 38(7):993–996. doi:10.1007/s10800-008-9514-6

    CAS  Google Scholar 

  81. Liew C-W, Ramesh S, Arof AK (2014) A novel approach on ionic liquid-based poly(vinyl alcohol) proton conductive polymer electrolytes for fuel cell applications. Int J Hydrog Energy 39(6):2917–2928. doi:10.1016/j.ijhydene.2013.07.092

    CAS  Google Scholar 

  82. Dahi A, Fatyeyeva K, Langevin D, Chappey C, Rogalsky SP, Tarasyuk OP, Marais S (2014) Polyimide/ionic liquid composite membranes for fuel cells operating at high temperatures. Electrochim Acta 130:830–840. doi:10.1016/j.electacta.2014.03.071

    CAS  Google Scholar 

  83. Di Noto V, Negro E, Sanchez J-Y, Iojoiu C (2010) Structure-relaxation interplay of a new nanostructured membrane based on tetraethylammonium trifluoromethanesulfonate ionic liquid and neutralized nafion 117 for high-temperature fuel cells. J Am Chem Soc 132(7):2183–2195. doi:10.1021/ja906975z

    Google Scholar 

  84. Lee S-Y, Ogawa A, Kanno M, Nakamoto H, Yasuda T, Watanabe M (2010) Nonhumidified intermediate temperature fuel cells using protic ionic liquids. J Am Chem Soc 132(28):9764–9773. doi:10.1021/ja102367x

    CAS  Google Scholar 

  85. Eguizábal A, Lemus J, Pina MP (2013) On the incorporation of protic ionic liquids imbibed in large pore zeolites to polybenzimidazole membranes for high temperature proton exchange membrane fuel cells. J Power Sources 222:483–492. doi:10.1016/j.jpowsour.2012.07.094

    Google Scholar 

  86. Jheng L-c, Hsu SL-c, Lin B-y, Hsu Y-l (2014) Quaternized polybenzimidazoles with imidazolium cation moieties for anion exchange membrane fuel cells. J Membr Sci 460:160–170. doi:10.1016/j.memsci.2014.02.043

    CAS  Google Scholar 

  87. Jothi PR, Dharmalingam S (2014) An efficient proton conducting electrolyte membrane for high temperature fuel cell in aqueous-free medium. J Membr Sci 450:389–396. doi:10.1016/j.memsci.2013.09.034

    CAS  Google Scholar 

  88. Gopi KH, Peera SG, Bhat SD, Sridhar P, Pitchumani S (2014) Preparation and characterization of quaternary ammonium functionalized poly(2,6-dimethyl-1,4-phenylene oxide) as anion exchange membrane for alkaline polymer electrolyte fuel cells. Int J Hydrog Energy 39(6):2659–2668. doi:10.1016/j.ijhydene.2013.12.009

    CAS  Google Scholar 

  89. Pan J, Chen C, Li Y, Wang L, Tan L, Li G, Tang X, Xiao L, Lu J, Zhuang L (2014) Constructing ionic highway in alkaline polymer electrolytes. Energy Environ Sci 7(1):354–360. doi:10.1039/C3EE43275K

    CAS  Google Scholar 

  90. Lin B, Qiu L, Lu J, Yan F (2010) Cross-linked alkaline ionic liquid-based polymer electrolytes for alkaline fuel cell applications. Chem Mater 22(24):6718–6725. doi:10.1021/cm102957g

    CAS  Google Scholar 

  91. Yuan J, Mecerreyes D, Antonietti M (2013) Poly(ionic liquid)s: an update. Prog Polym Sci 38(7):1009–1036. doi:10.1016/j.progpolymsci.2013.04.002

    CAS  Google Scholar 

  92. Kato T, Kado T, Tanaka S, Okazaki A, Hayase S (2006) Quasi-solid dye-sensitized solar cells containing nanoparticles modified with ionic liquid-type molecules. J Electrochem Soc 153(3):A626–A630. doi:10.1149/1.2161578

    CAS  Google Scholar 

  93. Kato T, Hayase S (2007) Quasi-solid dye sensitized solar cell with straight ion paths: proposal of hybrid electrolytes for ionic liquid-type electrolytes. J Electrochem Soc 154(1):B117–B121. doi:10.1149/1.2393008

    CAS  Google Scholar 

  94. Kuang D, Brillet J, Chen P, Takata M, Uchida S, Miura H, Sumioka K, Zakeeruddin SM, Grätzel M (2008) Application of highly ordered TiO2 nanotube arrays in flexible dye-sensitized solar cells. ACS Nano 2(6):1113–1116. doi:10.1021/nn800174y

    CAS  Google Scholar 

  95. Bai Y, Cao Y, Zhang J, Wang M, Li R, Wang P, Zakeeruddin SM, Gratzel M (2008) High-performance dye-sensitized solar cells based on solvent-free electrolytes produced from eutectic melts. Nat Mater 7(8):626–630, http://www.nature.com/nmat/journal/v7/n8/suppinfo/nmat2224_S1.html

    CAS  Google Scholar 

  96. Winther-Jensen O, Armel V, Forsyth M, MacFarlane DR (2010) In situ photopolymerization of a gel ionic liquid electrolyte in the presence of iodine and its use in dye sensitized solar cells. Macromol Rapid Commun 31(5):479–483. doi:10.1002/marc.200900701

    CAS  Google Scholar 

  97. Singh PK, Kim K-W, Park N-G, Rhee H-W (2008) Mesoporous nanocrystalline TiO2 electrode with ionic liquid-based solid polymer electrolyte for dye-sensitized solar cell application. Synth Met 158(14):590–593. doi:10.1016/j.synthmet.2008.04.003

    CAS  Google Scholar 

  98. Hu M, Sun J, Rong Y, Yang Y, Liu L, Li X, Forsyth M, MacFarlane DR, Han H (2014) Enhancement of monobasal solid-state dye-sensitized solar cells with polymer electrolyte assembling imidazolium iodide-functionalized silica nanoparticles. J Power Sources 248:283–288. doi:10.1016/j.jpowsour.2013.09.107

    CAS  Google Scholar 

  99. Soni SS, Fadadu KB, Vekariya RL, Debgupta J, Patel KD, Gibaud A, Aswal VK (2014) Effect of self-assembly on triiodide diffusion in water based polymer gel electrolytes: an application in dye solar cell. J Colloid Interface Sci 425:110–117. doi:10.1016/j.jcis.2014.03.047

    CAS  Google Scholar 

  100. Azaceta E, Marcilla R, Sanchez-Diaz A, Palomares E, Mecerreyes D (2010) Synthesis and characterization of poly(1-vinyl-3-alkylimidazolium) iodide polymers for quasi-solid electrolytes in dye sensitized solar cells. Electrochim Acta 56(1):42–46. doi:10.1016/j.electacta.2009.01.058

    CAS  Google Scholar 

  101. Zhao J, Shen X, Yan F, Qiu L, Lee S, Sun B (2011) Solvent-free ionic liquid/poly(ionic liquid) electrolytes for quasi-solid-state dye-sensitized solar cells. J Mater Chem 21(20):7326–7330. doi:10.1039/C1JM10346F

    CAS  Google Scholar 

  102. Chen X, Zhao J, Zhang J, Qiu L, Xu D, Zhang H, Han X, Sun B, Fu G, Zhang Y, Yan F (2012) Bis-imidazolium based poly(ionic liquid) electrolytes for quasi-solid-state dye-sensitized solar cells. J Mater Chem 22(34):18018–18024. doi:10.1039/C2JM33273F

    CAS  Google Scholar 

  103. Pandey GP, Hashmi SA (2013) Performance of solid-state supercapacitors with ionic liquid 1-ethyl-3-methylimidazolium tris(pentafluoroethyl) trifluorophosphate based gel polymer electrolyte and modified MWCNT electrodes. Electrochim Acta 105:333–341. doi:10.1016/j.electacta.2013.05.018

    CAS  Google Scholar 

  104. Simon P, Gogotsi Y (2008) Materials for electrochemical capacitors. Nat Mater 7(11):845–854

    CAS  Google Scholar 

  105. Kötz R, Carlen M (2000) Principles and applications of electrochemical capacitors. Electrochim Acta 45(15–16):2483–2498. doi:10.1016/S0013-4686(00)00354-6

    Google Scholar 

  106. Wang G, Zhang L, Zhang J (2012) A review of electrode materials for electrochemical supercapacitors. Chem Soc Rev 41(2):797–828. doi:10.1039/C1CS15060J

    CAS  Google Scholar 

  107. Liew C-W, Ramesh S, Arof AK (2014) Good prospect of ionic liquid based-poly(vinyl alcohol) polymer electrolytes for supercapacitors with excellent electrical, electrochemical and thermal properties. Int J Hydrog Energy 39(6):2953–2963. doi:10.1016/j.ijhydene.2013.06.061

    CAS  Google Scholar 

  108. Tamilarasan P, Ramaprabhu S (2013) Graphene based all-solid-state supercapacitors with ionic liquid incorporated polyacrylonitrile electrolyte. Energy 51:374–381. doi:10.1016/j.energy.2012.11.037

    CAS  Google Scholar 

  109. Kang YJ, Chun S-J, Lee S-S, Kim B-Y, Kim JH, Chung H, Lee S-Y, Kim W (2012) All-solid-state flexible supercapacitors fabricated with bacterial nanocellulose papers, carbon nanotubes, and triblock-copolymer ion gels. ACS Nano 6(7):6400–6406. doi:10.1021/nn301971r

    CAS  Google Scholar 

  110. Pandey GP, Hashmi SA (2013) Ionic liquid 1-ethyl-3-methylimidazolium tetracyanoborate-based gel polymer electrolyte for electrochemical capacitors. J Mater Chem A 1(10):3372–3378. doi:10.1039/C2TA01347A

    CAS  Google Scholar 

  111. Pandey GP, Hashmi SA, Kumar Y (2010) Performance studies of activated charcoal based electrical double layer capacitors with ionic liquid gel polymer electrolytes. Energy Fuels 24(12):6644–6652. doi:10.1021/ef1010447

    CAS  Google Scholar 

  112. Shi M-J, Kou S-Z, Shen B-S, Lang J-W, Yang Z, Yan X-B (2014) Improving the performance of all-solid-state supercapacitors by modifying ionic liquid gel electrolytes with graphene nanosheets prepared by arc-discharge. Chin Chem Lett 25(6):859–864. doi:10.1016/j.cclet.2014.04.010

    CAS  Google Scholar 

  113. Pandey GP, Rastogi AC, Westgate CR (2014) All-solid-state supercapacitors with poly(3,4-ethylenedioxythiophene)-coated carbon fiber paper electrodes and ionic liquid gel polymer electrolyte. J Power Sources 245:857–865. doi:10.1016/j.jpowsour.2013.07.017

    CAS  Google Scholar 

  114. Sellam HSA (2013) High rate performance of flexible pseudocapacitors fabricated using ionic-liquid-based proton conducting polymer electrolyte with poly(3, 4-ethylenedioxythiophene): poly(styrene sulfonate) and its hydrous ruthenium oxide composite electrodes. ACS Appl Mater Interfaces 5(9):3875–3883. doi:10.1021/am4005557

    CAS  Google Scholar 

  115. Hu L, Pasta M, Mantia FL, Cui L, Jeong S, Deshazer HD, Choi JW, Han SM, Cui Y (2010) Stretchable, porous, and conductive energy textiles. Nano Lett 10(2):708–714. doi:10.1021/nl903949m

    CAS  Google Scholar 

  116. Smela E (2003) Conjugated polymer actuators for biomedical applications. Adv Mater 15(6):481–494. doi:10.1002/adma.200390113

    CAS  Google Scholar 

  117. Shahinpoor M (2003) Ionic polymer–conductor composites as biomimetic sensors, robotic actuators and artificial muscles—a review. Electrochim Acta 48(14–16):2343–2353. doi:10.1016/S0013-4686(03)00224-X

    CAS  Google Scholar 

  118. Baughman RH, Cui C, Zakhidov AA, Iqbal Z, Barisci JN, Spinks GM, Wallace GG, Mazzoldi A, De Rossi D, Rinzler AG, Jaschinski O, Roth S, Kertesz M (1999) Carbon nanotube actuators. Science 284(5418):1340–1344. doi:10.1126/science.284.5418.1340

    CAS  Google Scholar 

  119. Fukushima T, Asaka K, Kosaka A, Aida T (2005) Fully plastic actuator through layer-by-layer casting with ionic-liquid-based bucky gel. Angew Chem Int Ed 44(16):2410–2413. doi:10.1002/anie.200462318

    CAS  Google Scholar 

  120. Mukai K, Asaka K, Kiyohara K, Sugino T, Takeuchi I, Fukushima T, Aida T (2008) High performance fully plastic actuator based on ionic-liquid-based bucky gel. Electrochim Acta 53(17):5555–5562. doi:10.1016/j.electacta.2008.02.113

    CAS  Google Scholar 

  121. Takeuchi I, Asaka K, Kiyohara K, Sugino T, Mukai K, Randriamahazaka H (2010) Electrochemical impedance spectroscopy and electromechanical behavior of bucky-gel actuators containing ionic liquids. J Phys Chem C 114(34):14627–14634. doi:10.1021/jp1018185

    CAS  Google Scholar 

  122. Mukai K, Asaka K, Sugino T, Kiyohara K, Takeuchi I, Terasawa N, Futaba DN, Hata K, Fukushima T, Aida T (2009) Highly conductive sheets from millimeter-long single-walled carbon nanotubes and ionic liquids: application to fast-moving, low-voltage electromechanical actuators operable in air. Adv Mater 21(16):1582–1585. doi:10.1002/adma.200802817

    CAS  Google Scholar 

  123. Imaizumi S, Kato Y, Kokubo H, Watanabe M (2012) Driving mechanisms of ionic polymer actuators having electric double Layer capacitor structures. J Phys Chem B 116(16):5080–5089. doi:10.1021/jp301501c

    CAS  Google Scholar 

  124. Imaizumi S, Ohtsuki Y, Yasuda T, Kokubo H, Watanabe M (2013) Printable polymer actuators from ionic liquid, soluble polyimide, and ubiquitous carbon materials. ACS Appl Mater Interfaces 5(13):6307–6315. doi:10.1021/am401351q

    CAS  Google Scholar 

  125. Coll C, Labrador RH, Manez RM, Soto J, Sancenon F, Segui M-J, Sanchez E (2005) Ionic liquids promote selective responses towards the highly hydrophilic anion sulfate in PVC membrane ion-selective electrodes. Chem Commun 24:3033–3035. doi:10.1039/B503154K

    Google Scholar 

  126. Shvedene NV, Chernyshov DV, Khrenova MG, Formanovsky AA, Baulin VE, Pletnev IV (2006) Ionic liquids plasticize and bring ion-sensing ability to polymer membranes of selective electrodes. Electroanalysis 18(13–14):1416–1421. doi:10.1002/elan.200603537

    CAS  Google Scholar 

  127. Wei D, Ivaska A (2008) Applications of ionic liquids in electrochemical sensors. Anal Chim Acta 607(2):126–135. doi:10.1016/j.aca.2007.12.011

    CAS  Google Scholar 

  128. Xiong HY, Chen T, Zhang XH, Wang SF (2007) High performance and stability of a hemoglobin-biosensor based on an ionic liquid as nonaqueous media for hydrogen peroxide monitoring. Electrochem Commun 9(11):2671–2675. doi:10.1016/j.elecom.2007.08.020

    CAS  Google Scholar 

  129. Chen H, Wang Y, Liu Y, Wang Y, Qi L, Dong S (2007) Direct electrochemistry and electrocatalysis of horseradish peroxidase immobilized in Nafion-RTIL composite film. Electrochem Commun 9(3):469–474. doi:10.1016/j.elecom.2006.10.019

    CAS  Google Scholar 

  130. Leleux P, Johnson C, Strakosas X, Rivnay J, Hervé T, Owens RM, Malliaras GG (2014) Ionic liquid gel-assisted electrodes for long-term cutaneous recordings. Adv Healthcare Mater 3(9):1377–1380. doi:10.1002/adhm.201300614

    CAS  Google Scholar 

  131. Kavanagh A, Fraser KJ, Byrne R, Diamond D (2012) An electrochromic ionic liquid: design, characterization, and performance in a solid-state platform. ACS Appl Mater Interfaces 5(1):55–62. doi:10.1021/am3018948

    Google Scholar 

  132. Kavanagh A, Copperwhite R, Oubaha M, Owens J, McDonagh C, Diamond D, Byrne R (2011) Photo-patternable hybrid ionogels for electrochromic applications. J Mater Chem 21(24):8687–8693. doi:10.1039/C1JM10704F

    CAS  Google Scholar 

  133. Moon HC, Lodge TP, Frisbie CD (2014) Solution-processable electrochemiluminescent ion gels for flexible, low-voltage, emissive displays on plastic. J Am Chem Soc 136(9):3705–3712. doi:10.1021/ja5002899

    CAS  Google Scholar 

  134. Anderson JL, Dixon JK, Brennecke JF (2007) Solubility of CO2, CH4, C2H6, C2H4, O2, and N2 in 1-Hexyl-3-methylpyridinium Bis(trifluoromethylsulfonyl)imide: comparison to other ionic liquids. Acc Chem Res 40(11):1208–1216. doi:10.1021/ar7001649

    CAS  Google Scholar 

  135. Hasib-ur-Rahman M, Siaj M, Larachi F (2010) Ionic liquids for CO2 capture—development and progress. Chem Eng Process Process Intensification 49(4):313–322. doi:10.1016/j.cep.2010.03.008

    CAS  Google Scholar 

  136. Lee S-H, Kim B-S, Lee E-W, Park Y-I, Lee J-M (2006) The removal of acid gases from crude natural gas by using novel supported liquid membranes. Desalination 200(1–3):21–22. doi:10.1016/j.desal.2006.03.227

    CAS  Google Scholar 

  137. Park Y-I, Kim B-S, Byun Y-H, Lee S-H, Lee E-W, Lee J-M (2009) Preparation of supported ionic liquid membranes (SILMs) for the removal of acidic gases from crude natural gas. Desalination 236(1–3):342–348. doi:10.1016/j.desal.2007.10.085

    CAS  Google Scholar 

  138. Liu Y, Wang M, Li J, Li Z, He P, Liu H, Li J (2005) Highly active horseradish peroxidase immobilized in 1-butyl-3-methylimidazolium tetrafluoroborate room-temperature ionic liquid based sol-gel host materials. Chem Commun 13:1778–1780. doi:10.1039/B417680D

    Google Scholar 

  139. Hough WL, Smiglak M, Rodriguez H, Swatloski RP, Spear SK, Daly DT, Pernak J, Grisel JE, Carliss RD, Soutullo MD, Davis JJH, Rogers RD (2007) The third evolution of ionic liquids: active pharmaceutical ingredients. New J Chem 31(8):1429–1436. doi:10.1039/B706677P

    CAS  Google Scholar 

  140. Vallet-Regí M, Balas F, Arcos D (2007) Mesoporous materials for drug delivery. Angew Chem Int Ed 46(40):7548–7558. doi:10.1002/anie.200604488

    Google Scholar 

  141. Fukumoto K, Yoshizawa M, Ohno H (2005) Room temperature ionic liquids from 20 natural amino acids. J Am Chem Soc 127(8):2398–2399. doi:10.1021/ja043451i

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maitane Salsamendi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Salsamendi, M., Rubatat, L., Mecerreyes, D. (2015). Polymeric Ion Gels: Preparation Methods, Characterization, and Applications. In: Torriero, A. (eds) Electrochemistry in Ionic Liquids. Springer, Cham. https://doi.org/10.1007/978-3-319-13485-7_9

Download citation

Publish with us

Policies and ethics