Skip to main content

Task-Specific Ionic Liquids for Electrochemical Applications

  • Chapter
Electrochemistry in Ionic Liquids
  • 2569 Accesses

Abstract

This chapter systematically discusses the physicochemical properties of task-specific ionic liquids (ILs) carrying various functional groups, and their unique electrochemical applications. Major types of task-specific ILs include ether/thioether- and hydroxyl/thiol-functionalized, carboxylate-functionalized, amine-functionalized, nitrile-functionalized, zwitterionic type, polymerized, other cation-functionalized, and anion-functionalized ILs and deep eutectic solvents (DES). These examples represent the “designable” nature of ILs and their high potentials in chemical processes particularly in electrochemical fields.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Seddon KR (1997) Ionic liquids for clean technology. J Chem Technol Biotechnol 68(4):351–356

    CAS  Google Scholar 

  2. Welton T (1999) Room-temperature ionic liquids–solvents for synthesis and catalysis. Chem Rev 99:2071–2083

    CAS  Google Scholar 

  3. Zhao H, Malhotra SV (2002) Applications of ionic liquids in organic synthesis. Aldrichimica Acta 35(3):75–83

    CAS  Google Scholar 

  4. Wasserscheid P, Welton T (2008) Ionic liquids in synthesis, 2nd edn. Wiley, Weinheim

    Google Scholar 

  5. Hallett JP, Welton T (2011) Room-temperature ionic liquids: solvents for synthesis and catalysis. 2. Chem Rev 111:3508–3576

    CAS  Google Scholar 

  6. Endres F, Welton T (2003) Inorganic synthesis. In: Wasserscheid P, Welton T (eds) Ionic liquids in synthesis. Wiley, Weinheim, pp 289–318

    Google Scholar 

  7. Kragl U, Eckstein M, Kaftzik N (2002) Enzyme catalysis in ionic liquids. Curr Opin Biotechnol 13:565–571

    CAS  Google Scholar 

  8. Park S, Kazlauskas RJ (2003) Biocatalysis in ionic liquids—advantages beyond green technology. Curr Opin Biotechnol 14(4):432–437

    CAS  Google Scholar 

  9. van Rantwijk F, Sheldon RA (2007) Biocatalysis in ionic liquids. Chem Rev 107(6):2757–2785

    Google Scholar 

  10. Yang Z, Pan W (2005) Ionic liquids: green solvents for nonaqueous biocatalysis. Enzym Microb Technol 37(1):19–28

    CAS  Google Scholar 

  11. Zhao H (2010) Methods for stabilizing and activating enzymes in ionic liquids—a review. J Chem Tech Biotechnol 85(7):891–907

    CAS  Google Scholar 

  12. Moniruzzaman M, Nakashima K, Kamiya N, Goto M (2010) Recent advances of enzymatic reactions in ionic liquids. Biochem Eng J 48(3):295–314

    CAS  Google Scholar 

  13. Ohno H (2011) Electrochemical aspects of ionic liquids, 2nd edn. Wiley, Hoboken, NJ

    Google Scholar 

  14. Hough WL, Rogers RD (2007) Ionic liquids then and now: from solvents to materials to active pharmaceutical ingredients. Bull Chem Soc Jpn 80(12):2262–2269

    CAS  Google Scholar 

  15. Kubisa P (2004) Application of ionic liquids as solvents for polymerization processes. Prog Polymer Sci 29(1):3–12

    CAS  Google Scholar 

  16. Carmichael AJ, Haddleton DM (2003) Polymer synthesis in ionic liquids. In: Wasserscheid P, Welton T (eds) Ionic liquids in synthesis. Wiley, Weinheim, pp 319–335

    Google Scholar 

  17. Brennecke JF, Maginn EJ (2003) Purification of gas with liquid ionic compounds. US 6,579,343

    Google Scholar 

  18. Zhao H, Xia S, Ma P (2005) Use of ionic liquids as ‘green’ solvents for extractions. J Chem Technol Biotechnol 80(10):1089–1096

    CAS  Google Scholar 

  19. Zhao H (2006) Innovative applications of ionic liquids as ‘green’ engineering liquids. Chem Eng Commun 193(12):1660–1677

    CAS  Google Scholar 

  20. Fei Z, Geldbach TJ, Zhao D, Dyson PJ (2006) From dysfunction to bis-function: on the design and applications of functionalised ionic liquids. Chem Eur J 12(8):2122–2130

    CAS  Google Scholar 

  21. Yue C, Fang D, Liu L, Yi T-F (2011) Synthesis and application of task-specific ionic liquids used as catalysts and/or solvents in organic unit reactions. J Mol Liq 163(3):99–121

    CAS  Google Scholar 

  22. Tang S, Baker GA, Zhao H (2012) Ether- and alcohol-functionalized task-specific ionic liquids: attractive properties and applications. Chem Soc Rev 41(10):4030–4066. doi:10.1039/C2CS15362A

    CAS  Google Scholar 

  23. Zhou Z-B, Matsumoto H, Tatsumi K (2005) Low-melting, low-viscous, hydrophobic ionic liquids: aliphatic quaternary ammonium salts with perfluoroalkyltrifluoroborates. Chem Eur J 11(2):752–766

    CAS  Google Scholar 

  24. Zhou Z-B, Matsumoto H, Tatsumi K (2006) Cyclic quaternary ammonium ionic liquids with perfluoroalkyltrifluoroborates: synthesis, characterization, and properties. Chem Eur J 12(8):2196–2212

    CAS  Google Scholar 

  25. Tsunashima K, Sugiya M (2007) Physical and electrochemical properties of low-viscosity phosphonium ionic liquids as potential electrolytes. Electrochem Commun 9(9):2353–2358

    CAS  Google Scholar 

  26. Zhou Z-B, Matsumoto H, Tatsumi K (2004) Low-melting, low-viscous, hydrophobic ionic liquids: N-alkyl(alkyl ether)-N-methylpyrrolidinium perfluoroethyltrifluoroborate. Chem Lett 33(12):1636–1637

    CAS  Google Scholar 

  27. Schrekker HS, Silva DO, Gelesky MA, Stracke MP, Schrekker CML, Gonçalves RS, Dupont J (2008) Preparation, cation-anion interactions and physicochemical properties of ether-functionalized imidazolium ionic liquids. J Braz Chem Soc 19(3):426–433

    CAS  Google Scholar 

  28. Matsumoto H, Sakaebe H, Tatsumi K (2005) Preparation of room temperature ionic liquids based on aliphatic onium cations and asymmetric amide anions and their electrochemical properties as a lithium battery electrolyte. J Power Sources 146(1–2):45–50

    CAS  Google Scholar 

  29. Siqueira LJA, Ribeiro MCC (2009) Alkoxy chain effect on the viscosity of a quaternary ammonium ionic liquid: molecular dynamics simulations. J Phys Chem B 113(4):1074–1079

    CAS  Google Scholar 

  30. Shirota H, Fukazawa H, Fujisawa T, Wishart JF (2010) Heavy atom substitution effects in non-aromatic ionic liquids: ultrafast dynamics and physical properties. J Phys Chem B 114(29):9400–9412. doi:10.1021/jp1021104

    CAS  Google Scholar 

  31. Shirota H, Funston AM, Wishart JF, Castner EWJ (2005) Ultrafast dynamics of pyrrolidinium cation ionic liquids. J Chem Phys 122(18):184512

    Google Scholar 

  32. Chen ZJ, Xue T, Lee J-M (2012) What causes the low viscosity of ether-functionalized ionic liquids? Its dependence on the increase of free volume. RSC Adv 2:10564–10574. doi:10.1039/c2ra21772d

    CAS  Google Scholar 

  33. Jin H, O’Hare B, Dong J, Arzhantsev S, Baker GA, Wishart JF, Benesi AJ, Maroncelli M (2008) Physical properties of ionic liquids consisting of the 1-butyl-3-methylimidazolium cation with various anions and the bis(trifluoromethylsulfonyl)imide anion with various cations. J Phys Chem B 112(1):81–92

    CAS  Google Scholar 

  34. Pinkert A, Ang KL, Marsh KN, Pang S (2011) Density, viscosity and electrical conductivity of protic alkanolammonium ionic liquids. Phys Chem Chem Phys 13:5136–5143

    CAS  Google Scholar 

  35. O’Brien RA, Mirjafari A, Jajam V, Capley EN, Stenson AC, West KN, Davis JHJ (2011) Functionalized ionic liquids with highly polar polyhydroxylated appendages and their rapid synthesis via thiol-ene click chemistry. Tetrahedron Lett 52(40):5173–5175

    Google Scholar 

  36. Wu T-Y, Su S-G, Lin K-F, Lin Y-C, Wang HP, Lin M-W, Gung S-T, Sun I-W (2011) Voltammetric and physicochemical characterization of hydroxyl- and ether-functionalized onium bis(trifluoromethanesulfonyl)imide ionic liquids. Electrochim Acta 56(21):7278–7287

    CAS  Google Scholar 

  37. Zhou Z-B, Matsumoto H, Tatsumi K (2004) Low-melting, low-viscous, hydrophobic ionic liquids: 1-alkyl(alkyl ether)-3-methylimidazolium perfluoroalkyltrifluoroborate. Chem Eur J 10(24):6581–6591

    CAS  Google Scholar 

  38. Monteiro MJ, Camilo FF, Ribeiro MCC, Torresi RM (2010) Ether-bond-containing ionic liquids and the relevance of the ether bond position to transport properties. J Phys Chem B 114(39):12488–12494

    CAS  Google Scholar 

  39. Ganapatibhotla LVNR, Zheng J, Roy D, Krishnan S (2010) PEGylated imidazolium ionic liquid electrolytes: thermophysical and electrochemical properties. Chem Mater 22(23):6347–6360

    CAS  Google Scholar 

  40. Luo S, Zhang S, Wang Y, Xia A, Zhang G, Du X, Xu D (2010) Complexes of ionic liquids with poly(ethylene glycol)s. J Org Chem 75(6):1888–1891

    CAS  Google Scholar 

  41. Dzyuba SV, Bartsch RA (2002) Expanding the polarity range of ionic liquids. Tetrahedron Lett 43(26):4657–4659

    CAS  Google Scholar 

  42. Chiappe C, Pomelli CS, Rajamani S (2011) Influence of structural variations in cationic and anionic moieties on the polarity of ionic liquids. J Phys Chem B 115:9653–9661

    CAS  Google Scholar 

  43. Huang M-M, Jiang Y, Sasisanker P, Driver GW, Weingartner H (2011) Static relative dielectric permittivities of ionic liquids at 25 °C. J Chem Eng Data 56(4):1494–1499

    CAS  Google Scholar 

  44. Holbrey JD, Turner MB, Reichert WM, Rogers RD (2003) New ionic liquids containing an appended hydroxyl functionality from the atom-efficient, one-pot reaction of 1-methylimidazole and acid with propylene oxide. Green Chem 5:731–736

    CAS  Google Scholar 

  45. Schrekker HS, Stracke MP, Schrekker CML, Dupont J (2007) Ether-functionalized imidazolium hexafluorophosphate ionic liquids for improved water miscibilities. Ind Eng Chem Res 46(22):7389–7392

    CAS  Google Scholar 

  46. Leicunaite J, Klimenkovs I, Kviesis J, Zacs D, Kreišmanis JP (2010) Liquid chromatography and characterization of ether-functionalized imidazolium ionic liquids on mixed-mode reversed-phase/cation exchange stationary phase. C R Chim 13(10):1335–1340

    CAS  Google Scholar 

  47. Dupont J (2004) On the solid, liquid and solution structural organization of imidazolium ionic liquids. J Braz Chem Soc 15(3):341–350

    CAS  Google Scholar 

  48. Dupont J, Spencer J (2004) On the noninnocent nature of 1,3-dialkylimidazolium ionic liquids. Angew Chem Int Ed 43(40):5296–5297

    CAS  Google Scholar 

  49. Bonhote P, Dias A-P, Michel A, Papageorgiou N, Kalyanasundaram K, Gratzel M (1996) Hydrophobic, highly conductive ambient-temperature molten salts. Inorg Chem 35(5):1168–1178

    CAS  Google Scholar 

  50. Donato RK, Migliorini MV, Benvegnú MA, Dupont J, Gonçalves RS, Schrekker HS (2007) The electrochemical properties of a platinum electrode in functionalized room temperature imidazolium ionic liquids. J Solid State Electrochem 11:1481–1487

    CAS  Google Scholar 

  51. Matsumoto H, Yanagida M, Tanimoto K, Nomura M, Kitagawa Y, Miyazaki Y (2000) Highly conductive room temperature molten salts based on small trimethylalkylammonium cations and bis(trifluoromethylsulfonyl)imide. Chem Lett 29(8):922–923

    Google Scholar 

  52. Chen Z, Liu S, Li Z, Zhang Q, Deng Y (2011) Dialkoxy functionalized quaternary ammonium ionic liquids as potential electrolytes and cellulose solvents. New J Chem 35:1596–1606

    CAS  Google Scholar 

  53. Fang S, Yang L, Wang J, Li M, Tachibana K, Kamijima K (2009) Ionic liquids based on functionalized guanidinium cations and TFSI anion as potential electrolytes. Electrochim Acta 54(17):4269–4273

    CAS  Google Scholar 

  54. Fang S, Yang L, Wei C, Jiang C, Tachibana K, Kamijima K (2009) Ionic liquids based on guanidinium cations and TFSI anion as potential electrolytes. Electrochim Acta 54(6):1752–1756

    CAS  Google Scholar 

  55. Belhocine T, Forsyth SA, Gunaratne HQN, Nieuwenhuyzen M, Nockemann P, Puga AV, Seddon KR, Srinivasan G, Whiston K (2011) Azepanium ionic liquids. Green Chem 13(11):3137–3155. doi:10.1039/C1GC15189D

    CAS  Google Scholar 

  56. Fang S, Zhang Z, Jin Y, Yang L, Hirano S, Tachibana K, Katayama S (2011) New functionalized ionic liquids based on pyrrolidinium and piperidinium cations with two ether groups as electrolytes for lithium battery. J Power Sources 196(13):5637–5644

    CAS  Google Scholar 

  57. Fang S, Jin Y, Yang L, Hirano S, Kazuhiro Tachibana K, Katayama S (2011) Functionalized ionic liquids based on quaternary ammonium cations with three or four ether groups as new electrolytes for lithium battery. Electrochim Acta 56(12):4663–4671

    CAS  Google Scholar 

  58. Xu W, Cooper EI, Angel CA (2003) Ionic liquids: ion mobilities, glass temperatures, and fragilities. J Phys Chem B 107:6170–6178

    CAS  Google Scholar 

  59. Han H-B, Nie J, Liu K, Li W-K, Feng W-F, Armand M, Matsumoto H, Zhou Z-B (2010) Ionic liquids and plastic crystals based on tertiary sulfonium and bis(fluorosulfonyl)imide. Electrochim Acta 55(3):1221–1226

    CAS  Google Scholar 

  60. Liao C, Shao N, Han KS, Sun X-G, Jiang D-E, Hagaman EW, Dai S (2011) Physicochemical properties of imidazolium-derived ionic liquids with different C-2 substitutions. Phys Chem Chem Phys 13:21503–21510

    CAS  Google Scholar 

  61. Jin Y, Fang S, Zhang Z, Zhang J, Yang L, Hirano S (2013) C-2 Functionalized trialkylimidazolium ionic liquids with alkoxymethyl group: synthesis, characterization, and properties. Ind Eng Chem Res 52(22):7297–7306. doi:10.1021/ie400371q

    CAS  Google Scholar 

  62. Chai M, Jin Y, Fang S, Yang L, Hirano S, Tachibana K (2012) Ether-functionalized pyrazolium ionic liquids as new electrolytes for lithium battery. Electrochim Acta 66:67–74. doi:10.1016/j.electacta.2012.01.059

    CAS  Google Scholar 

  63. Migliorini MV, Donato RK, Benvegnú MA, Dupont J, Gonçalves RS, Schrekker HS (2008) Imidazolium ionic liquid–water mixtures: the formation of a new species that inhibits the electrocatalytical charge transfer processes on a platinum surface. Catal Commun 9(6):971–975

    CAS  Google Scholar 

  64. Liu S, Chen Z, Zhang Q, Zhang S, Li Z, Shi F, Ma X, Deng Y (2011) Carborane-derivatized low-melting salts with ether-functionalized cations—preparation and properties. Eur J Inorg Chem 2011(12):1910–1920. doi:10.1002/ejic.201001351

    Google Scholar 

  65. Lang CM, Kohl PA (2007) Investigation of ether-substituted quaternary ammonium ionic liquids. J Electrochem Soc 154(6):F106–F110. doi:10.1149/1.2721778

    CAS  Google Scholar 

  66. Yeon S-H, Kim K-S, Choi S, Lee H, Kim HS, Kim H (2005) Physical and electrochemical properties of 1-(2-hydroxyethyl)-3-methyl imidazolium and N-(2-hydroxyethyl)-N-methyl morpholinium ionic liquids. Electrochim Acta 50(27):5399–5407

    CAS  Google Scholar 

  67. Cooper EI, Angell CA (1983) Versatile organic iodide melts and glasses with high mole fractions of LiI: glass transition temperatures and electrical conductivities. Solid State Ion 9–10(1):617–622

    Google Scholar 

  68. Cooper EI, Angell CA (1986) Ambient temperature plastic crystal fast ion conductors (PLICFICS). Solid State Ion 18–19(1):570–576

    Google Scholar 

  69. Ohno H (2006) Functional design of ionic liquids. Bull Chem Soc Jpn 79(11):1665–1680

    CAS  Google Scholar 

  70. Nakai Y, Ito K, Ohno H (1998) Ion conduction in molten salts prepared by terminal-charged PEO derivatives. Solid State Ion 113–115:199–204

    Google Scholar 

  71. Ohno H, Nakai Y, Ito K (1998) Ionic conductivity of molten salts formed by polyether/salt hybrids. Chem Lett 27(1):15–16

    Google Scholar 

  72. Dickinson E, Williams ME, Hendrickson SM, Masui H, Murray RW (1999) Hybrid redox polyether melts based on polyether-tailed counterions. J Am Chem Soc 121(4):613–616

    CAS  Google Scholar 

  73. Fang S, Tang Y, Tai X, Yang L, Tachibana K, Kamijima K (2011) One ether-functionalized guanidinium ionic liquid as new electrolyte for lithium battery. J Power Sources 196(3):1433–1441

    CAS  Google Scholar 

  74. Jin Y, Fang S, Yang L, Hirano S, Tachibana K (2011) Functionalized ionic liquids based on guanidinium cations with two ether groups as new electrolytes for lithium battery. J Power Sources 196(24):10658–10666

    CAS  Google Scholar 

  75. Ferrari S, Quartarone E, Mustarelli P, Magistris A, Fagnoni M, Protti S, Gerbaldi C, Spinella A (2010) Lithium ion conducting PVdF-HFP composite gel electrolytes based on N-methoxyethyl-N-methylpyrrolidinium bis(trifluoromethanesulfonyl)-imide ionic liquid. J Power Sources 195(2):559–566. doi:10.1016/j.jpowsour.2009.08.015

    CAS  Google Scholar 

  76. Gerbaldi C, Nair JR, Ferrari S, Chiappone A, Meligrana G, Zanarini S, Mustarelli P, Penazzi N, Bongiovanni R (2012) New electrolyte membranes for Li-based cells: methacrylic polymers encompassing pyrrolidinium-based ionic liquid by single step photo-polymerisation. J Membr Sci 423–424:459–467. doi:10.1016/j.memsci.2012.08.057

    Google Scholar 

  77. Han H-B, Liu K, Feng S-W, Zhou S-S, Feng W-F, Nie J, Li H, Huang X-J, Matsumoto H, Armand M, Zhou Z-B (2010) Ionic liquid electrolytes based on multi-methoxyethyl substituted ammoniums and perfluorinated sulfonimides: preparation, characterization, and properties. Electrochim Acta 55(23):7134–7144. doi:10.1016/j.electacta.2010.06.063

    CAS  Google Scholar 

  78. Chai M, Jin Y, Fang S, Yang L, Hirano S, Tachibana K (2012) Low-viscosity ether-functionalized pyrazolium ionic liquids as new electrolytes for lithium battery. J Power Sources 216:323–329

    CAS  Google Scholar 

  79. Ferrari S, Quartarone E, Tomasi C, Ravelli D, Protti S, Fagnoni M, Mustarelli P (2013) Alkoxy substituted imidazolium-based ionic liquids as electrolytes for lithium batteries. J Power Sources 235:142–147. doi:10.1016/j.jpowsour.2013.01.149

    CAS  Google Scholar 

  80. Nakamoto H, Suzuki Y, Shiotsuki T, Mizuno F, Higashi S, Takechi K, Asaoka T, Nishikoori H, Iba H (2013) Ether-functionalized ionic liquid electrolytes for lithium-air batteries. J Power Sources 243:19–23

    CAS  Google Scholar 

  81. Sato T, Masuda G, Takagi K (2004) Electrochemical properties of novel ionic liquids for electric double layer capacitor applications. Electrochim Acta 49(21):3603–3611

    CAS  Google Scholar 

  82. Higashiya S, Devarajan TS, Rane-Fondacaro MV, Dangler C, Snyder J, Haldar P (2009) Synthesis of oxygen-containing spirobipyrrolidinium salts for high conductivity room temperature ionic liquids. Helv Chim Acta 92(8):1600–1609

    CAS  Google Scholar 

  83. Pandey GP, Kumar Y, Hashmi SA (2011) Ionic liquid incorporated PEO based polymer electrolyte for electrical double layer capacitors: a comparative study with lithium and magnesium systems. Solid State Ion 190(1):93–98

    CAS  Google Scholar 

  84. Stathatos E, Lianos P, Jovanovski V, Orel B (2005) Dye-sensitized photoelectrochemical solar cells based on nanocomposite organic—inorganic materials. J Photochem Photobiol A 169(1):57–61

    CAS  Google Scholar 

  85. Wang M, Xiao X, Zhou X, Li X, Lin Y (2007) Investigation of PEO-imidazole ionic liquid oligomer electrolytes for dye-sensitized solar cells. Sol Energy Mater Sol Cells 91(9):785–790

    CAS  Google Scholar 

  86. Yang H, Liu J, Lin Y, Zhang J, Zhou X (2011) PEO-imidazole ionic liquid-based electrolyte and the influence of NMBI on dye-sensitized solar cells. Electrochim Acta 56(18):6271–6276

    CAS  Google Scholar 

  87. Zheng Y, Huang Q, Fang S, Yang L, Gan Y (2013) Ether-functionalized pyrazolium ionic liquids as electrolytes for dye sensitized solar cells. Int J Electrochem Sci 8:9558–9567

    CAS  Google Scholar 

  88. Gao H, Xi M, Qi X, Lu M, Zhan T, Sun W (2012) Application of a hydroxyl functionalized ionic liquid modified electrode for the sensitive detection of adenosine-5′-monophosphate. J Electroanal Chem 664:88–93. doi:10.1016/j.jelechem.2011.10.018

    CAS  Google Scholar 

  89. Guo Y, Hu S, Qi X, Xiang J, Sun W (2012) Voltammetric detection of adenosine-5′-diphosphate with a carbon paste electrode modified by a hydroxyl functionalized imidazolium-based ionic liquid. Acta Chim Slov 59:129–135

    CAS  Google Scholar 

  90. Yu Y, Sun Q, Liu X, Wu H, Zhou T, Shi G (2011) Size-controllable gold–platinum alloy nanoparticles on nine functionalized ionic-liquid surfaces and their application as electrocatalysts for hydrogen peroxide reduction. Chem Eur J 17(40):11314–11323. doi:10.1002/chem.201100010

    CAS  Google Scholar 

  91. Dedzo GK, Letaief S, Detellier C (2012) Kaolinite–ionic liquid nanohybrid materials as electrochemical sensors for size-selective detection of anions. J Mater Chem 22:20593–20601. doi:10.1039/C2JM34772E

    CAS  Google Scholar 

  92. Fujino Y, Kakiuchi T (2011) Ionic liquid salt bridge based on N-alkyl-N-methylpyrrolidinium bis(pentafluoroethanesulfonyl)amide for low ionic strength aqueous solutions. J Electroanal Chem 651(1):61–66

    CAS  Google Scholar 

  93. Sakaida H, Kitazumi Y, Kakiuchi T (2010) Ionic liquid salt bridge based on tributyl(2-methoxyethyl)phosphonium bis(pentafluoroethanesulfonyl)amide for stable liquid junction potentials in highly diluted aqueous electrolyte solutions. Talanta 83(2):663–666

    CAS  Google Scholar 

  94. Opallo M, Lesniewski A (2011) A review on electrodes modified with ionic liquids. J Electroanal Chem 656(1–2):2–16

    CAS  Google Scholar 

  95. Lee BS, Chi YS, Lee JK, Choi IS, Song CE, Namgoong SK, Lee S-G (2004) Imidazolium ion-terminated self-assembled monolayers on Au: effects of counteranions on surface wettability. J Am Chem Soc 126(2):480–481

    CAS  Google Scholar 

  96. Chi YS, Hwang S, Lee BS, Kwak J, Choi IS, Lee S-G (2005) Anion exchange-promoted Ru3+/2+ redox switch in self-assembled monolayers of imidazolium ions on a gold electrode. Langmuir 21(10):4268–4271

    CAS  Google Scholar 

  97. Rong J, Chi Y, Zhang Y, Chen L, Chen G (2010) Enhanced electrochemiluminescence of luminol-O2 system at gold–hydrophobic ionic liquidwater interface. Electrochem Commun 12(2):270–273

    CAS  Google Scholar 

  98. Itoh H, Naka K, Chujo Y (2004) Synthesis of gold nanoparticles modified with ionic liquid based on the imidazolium cation. J Am Chem Soc 126(10):3026–3027

    CAS  Google Scholar 

  99. Torriero AAJ, Siriwardana AI, Bond AM, Burgar IM, Dunlop NF, Deacon GB, MacFarlane DR (2009) Physical and electrochemical properties of thioether-functionalized ionic liquids. J Phys Chem B 113(32):11222–11231. doi:10.1021/jp9046769

    CAS  Google Scholar 

  100. Lee J-M, Prausnitz JM (2010) Polarity and hydrogen-bond-donor strength for some ionic liquids: effect of alkyl chain length on the pyrrolidinium cation. Chem Phys Lett 492(1–3):55–59

    CAS  Google Scholar 

  101. Lesniewski A, Paszewski M, Opallo M (2010) Gold–carbon three dimensional film electrode prepared from oppositely charged conductive nanoparticles by layer-by-layer approach. Electrochem Commun 12(3):435–437

    CAS  Google Scholar 

  102. Zhao Q, Eichhorn J, Pitner WR, Anderson JL (2009) Using the solvation parameter model to characterize functionalized ionic liquids containing the tris(pentafluoroethyl)trifluorophosphate (FAP) anion. Anal Bioanal Chem 395(1):225–234

    CAS  Google Scholar 

  103. Egashira M, Todo H, Yoshimoto N, Morita M, Yamaki J-I (2007) Functionalized imidazolium ionic liquids as electrolyte components of lithium batteries. J Power Sources 174(2):560–564

    CAS  Google Scholar 

  104. Nockemann P, Thijs B, Parac-Vogt TN, Van Hecke K, Van Meervelt L, Tinant B, Hartenbach I, Schleid T, Ngan VT, Nguyen MT, Binnemans K (2008) Carboxyl-functionalized task-specific ionic liquids for solubilizing metal oxides. Inorg Chem 47(21):9987–9999

    CAS  Google Scholar 

  105. Mutelet F, Jaubert J-N, Rogalski M, Harmand J, Sindt M, Mieloszynski J-L (2008) Activity coefficients at infinite dilution of organic compounds in 1-(meth)acryloyloxyalkyl-3-methylimidazolium bromide using inverse gas chromatography. J Phys Chem B 112(12):3773–3785

    CAS  Google Scholar 

  106. Lu D, Shomali N, Shen A (2010) Task specific ionic liquid for direct electrochemistry of metal oxides. Electrochem Commun 12(9):1214–1217. doi:10.1016/j.elecom.2010.06.022

    CAS  Google Scholar 

  107. Wang M, Schneider A, Niedziólka-Jönsson J, Marcon L, Ghodbane S, Steinmüller-Nethl D, Li M, Boukherroub R, Szunerits S (2010) Covalent modification of boron-doped diamond electrodes with an imidazolium-based ionic liquid. Electrochim Acta 55(5):1582–1587

    CAS  Google Scholar 

  108. Tsuda T, Kondo K, Tomioka T, Takahashi Y, Matsumoto H, Kuwabata S, Hussey CL (2011) Design, synthesis, and electrochemistry of room-temperature ionic liquids functionalized with propylene carbonate. Angew Chem Int Ed 50:1310–1313

    CAS  Google Scholar 

  109. Deng Y, Husson P, Delort A-M, Besse-Hoggan P, Sancelme M, Gomes MFC (2011) Influence of an oxygen functionalization on the physicochemical properties of ionic liquids: density, viscosity, and carbon dioxide solubility as a function of temperature. J Chem Eng Data 56(11):4194–4202

    CAS  Google Scholar 

  110. Baek B, Lee S, Jung C (2011) Pyrrolidinium cation-based ionic liquids with different functional groups: butyl, butyronitrile, pentenyl, and methyl butyrate. Int J Electrochem Sci 6:6220–6234

    CAS  Google Scholar 

  111. Zhang Y, Shen Y, Yuan J, Han D, Wang Z, Zhang Q, Niu L (2006) Design and synthesis of multifunctional materials based on an ionic-liquid backbone. Angew Chem Int Ed 45(35):5867–5870

    Google Scholar 

  112. Zhang Y, Shen Y, Han D, Wang Z, Song J, Li F, Niu L (2007) Carbon nanotubes and glucose oxidase bionanocomposite bridged by ionic liquid-like unit: Preparation and electrochemical properties. Biosens Bioelectron 23(3):438–443. doi:10.1016/j.bios.2007.06.010

    Google Scholar 

  113. Gao R, Zheng J (2009) Amine-terminated ionic liquid functionalized carbon nanotube-gold nanoparticles for investigating the direct electron transfer of glucose oxidase. Electrochem Commun 11(3):608–611. doi:10.1016/j.elecom.2008.12.060

    CAS  Google Scholar 

  114. Liu X, Bu C, Nan Z, Zheng L, Qiu Y, Lu X (2013) Enzymes immobilized on amine-terminated ionic liquid-functionalized carbon nanotube for hydrogen peroxide determination. Talanta 105:63–68

    CAS  Google Scholar 

  115. Li R, Liu C, Ma M, Wang Z, Zhan G, Li B, Wang X, Fang H, Zhang H, Li C (2013) Synthesis of 1,3-di(4-amino-1-pyridinium)propane ionic liquid functionalized graphene nanosheets and its application in direct electrochemistry of hemoglobin. Electrochim Acta 95:71–79

    CAS  Google Scholar 

  116. Egashira M, Okada S, Yamaki J, Dri DA, Bonadies F, Scrosati B (2004) The preparation of quaternary ammonium-based ionic liquid containing a cyano group and its properties in a lithium battery electrolyte. J Power Sources 138(1–2):240–244. doi:10.1016/j.jpowsour.2004.06.022

    CAS  Google Scholar 

  117. Zhang Q, Li Z, Zhang J, Zhang S, Zhu L, Yang J, Zhang X, Deng Y (2007) Physicochemical properties of nitrile-functionalized ionic liquids. J Phys Chem B 111(11):2864–2872. doi:10.1021/jp067327s

    CAS  Google Scholar 

  118. Siriwardana AI, Torriero AAJ, Reyna-Gonzalez JM, Burgar IM, Dunlop NF, Bond AM, Deacon GB, MacFarlane DR (2010) Nitrile functionalized methimazole-based ionic liquids. J Org Chem 75:8376–8382. doi:10.1021/jo101449q

    CAS  Google Scholar 

  119. Nguyen DQ, Bae HW, Jeon EH, Lee JS, Cheong M, Kim H, Kim HS, Lee H (2008) Zwitterionic imidazolium compounds with high cathodic stability as additives for lithium battery electrolytes. J Power Sources 183(1):303–309. doi:10.1016/j.jpowsour.2008.04.047

    CAS  Google Scholar 

  120. Rondla R, Lin JCY, Yang CT, Lin IJB (2013) Strong tendency of homeotropic alignment and anisotropic lithium ion conductivity of sulfonate functionalized zwitterionic imidazolium ionic liquid crystals. Langmuir 29(37):11779–11785. doi:10.1021/la402336n

    CAS  Google Scholar 

  121. Ohno H, Yoshizawa-Fujita M (2011) Ion conductive polymers. In: Ohno H (ed) Electrochemical aspects of ionic liquids, 2nd edn. Wiley, Hoboken, NJ, pp 419–431

    Google Scholar 

  122. Li F, Shan C, Bu X, Shen Y, Yang G, Niu L (2008) Fabrication and electrochemical characterization of electrostatic assembly of polyelectrolyte-functionalized ionic liquid and Prussian blue ultrathin films. J Electroanal Chem 616(1–2):1–6. doi:10.1016/j.jelechem.2007.12.020

    CAS  Google Scholar 

  123. Bo X, Bai J, Qi B, Guo L (2011) Ultra-fine Pt nanoparticles supported on ionic liquid polymer-functionalized ordered mesoporous carbons for nonenzymatic hydrogen peroxide detection. Biosens Bioelectron 28(1):77–83. doi:10.1016/j.bios.2011.07.001

    CAS  Google Scholar 

  124. Wu Y, Feng X, Zhou S, Shi H, Wu H, Zhao S, Song W (2013) Sensing epinephrine with an ITO electrode modified with an imprinted chitosan film containing multi-walled carbon nanotubes and a polymerized ionic liquid. Microchim Acta 180:1325–1332. doi:10.1007/s00604-013-1063-y

    CAS  Google Scholar 

  125. Jia W, Wu Y, Huang J, An Q, Xu D, Wu Y, Li F, Li G (2010) Poly(ionic liquid) brush coated electrospun membrane: a useful platform for the development of functionalized membrane systems. J Mater Chem 20:8617–8623. doi:10.1039/c0jm01179g

    CAS  Google Scholar 

  126. Weber RL, Ye Y, Schmitt AL, Banik SM, Elabd YA, Mahanthappa MK (2011) Effect of nanoscale morphology on the conductivity of polymerized ionic liquid block copolymers. Macromolecules 44(14):5727–5735. doi:10.1021/ma201067h

    CAS  Google Scholar 

  127. Díaz M, Ortiz A, Vilas M, Tojo E, Ortiz I (2013) Performance of PEMFC with new polyvinyl-ionic liquids based membranes as electrolytes. Int J Hydrog Energy. doi:10.1016/j.ijhydene.2013.04.155

    Google Scholar 

  128. Szot K, Lesniewski A, Niedziolka J, Jönsson M, Rizzi C, Gaillon L, Marken F, Rogalski J, Opallo M (2008) Sol–gel processed ionic liquid—hydrophilic carbon nanoparticles multilayer film electrode prepared by layer-by-layer method. J Electroanal Chem 623(2):170–176. doi:10.1016/j.jelechem.2008.07.023

    CAS  Google Scholar 

  129. Szot K, Lynch RP, Lesniewski A, Majewska E, Sirieix-Plenet J, Gaillon L, Opallo M (2011) The effect of linker of electrodes prepared from sol–gel ionic liquid precursor and carbon nanoparticles on dioxygen electroreduction bioelectrocatalysis. Electrochim Acta 56(28):10306–10312. doi:10.1016/j.electacta.2011.03.139

    CAS  Google Scholar 

  130. Weaver JEF, Breadner D, Deng F, Ramjee B, Ragogna PJ, Murray RW (2011) Electrochemistry of ferrocene-functionalized phosphonium ionic liquids. J Phys Chem C 115:19379–19385

    CAS  Google Scholar 

  131. Forgie JC, El Khakani S, MacNeil DD, Rochefort D (2013) Electrochemical characterisation of a lithium-ion battery electrolyte based on mixtures of carbonates with a ferrocene-functionalised imidazolium electroactive ionic liquid. Phys Chem Chem Phys 15:7713–7721. doi:10.1039/C3CP50560J

    CAS  Google Scholar 

  132. Wang S-M, Cheng H-H, Lai K-F, Cheng S-H (2012) Surface redox-mediated dihydronicotinamide adenine dinucleotide probes based on ionic liquids covalently bound with catechol functionality. Electrochim Acta 77:330–338. doi:10.1016/j.electacta.2012.06.008

    CAS  Google Scholar 

  133. Weng W, Zhang Z, Schlueter JA, Amine K (2013) Synthesis and electrochemical property of sulfone-functionalized imidazolium ionic liquid electrolytes. Electrochim Acta 92:392–396

    CAS  Google Scholar 

  134. Sawamura T, Kuribayashi S, Inagi S, Fuchigami T (2010) Use of task-specific ionic liquid for selective electrocatalytic fluorination. Org Lett 12(3):644–646. doi:10.1021/ol9028836

    CAS  Google Scholar 

  135. Letcher TM, Domanska U, Marciniak M, Marciniak A (2005) Activity coefficients at infinite dilution measurements for organic solutes in the ionic liquid 1-butyl-3-methyl-imidazolium 2-(2-methoxyethoxy) ethyl sulfate using g.l.c. at T = (298.15, 303.15, and 308.15) K. J Chem Thermodyn 37(6):587–593

    CAS  Google Scholar 

  136. Zhuang R, Jian F, Wang K (2009) A new binuclear Cd(II)-containing ionic liquid: preparation and electrocatalytic activities. J Organomet Chem 694(22):3614–3618. doi:10.1016/j.jorganchem.2009.07.012

    CAS  Google Scholar 

  137. Wang KF, Zhang L, Zhuang RR, Jian FF (2011) An iron(III)-containing ionic liquid: characterization, magnetic property and electrocatalysis. Transit Met Chem 36:785–791. doi:10.1007/s11243-011-9520-0

    Google Scholar 

  138. Qiao Y, Hu J, Li H, Hua L, Hu Y, Feng B, Hou Z (2010) Physicochemical properties of tungstate-based room-temperature ionic liquids. J Electrochem Soc 157(9):F124–F129. doi:10.1149/1.3462993

    CAS  Google Scholar 

  139. Su W-Y, Cheng S-H (2012) Functionalized ionic liquid and sol-gel composite film for the electrochemical reduction and determination of nitrite without interference from dissolved oxygen. Int J Electrochem Sci 7:9058–9073

    CAS  Google Scholar 

  140. Wong H, Han S, Livingston AG (2006) The effect of ionic liquids on product yield and catalyst stability. Chem Eng Sci 61(4):1338–1341

    CAS  Google Scholar 

  141. Francisco M, Lago S, Soto A, Arce A (2010) Essential oil deterpenation by solvent extraction using 1-ethyl-3-methylimidazolium 2-(2-methoxyethoxy) ethylsulfate ionic liquid. Fluid Phase Equilib 296(2):149–153

    CAS  Google Scholar 

  142. Klein R, Zech O, Maurer E, Kellermeier M, Kunz W (2011) Oligoether carboxylates: task-specific room-temperature ionic liquids. J Phys Chem B 115(29):8961–8969

    CAS  Google Scholar 

  143. Enomoto T, Matsumoto K, Hagiwara R (2011) Properties of fluorosulfate-based ionic liquids and geometries of (FO2SOH)OSO2F and (FO2SOH)2O2SOF. Dalton Trans 40:12491–12499. doi:10.1039/C1DT11014D

    CAS  Google Scholar 

  144. Liu C, Xu F, Feng S, Zheng L, Zhang H, Feng W, Huang X, Armand M, Nie J, Zhou Z (2013) New hydrophobic ionic liquids based on (fluorosulfonyl)(polyfluorooxaalkanesulfonyl)imides with various oniums. Electrochim Acta 99:262–272. doi:10.1016/j.electacta.2013.02.095

    CAS  Google Scholar 

  145. Zheng Y, Dong K, Wang Q, Zhang J, Lu X (2013) Density, viscosity, and conductivity of Lewis acidic 1-butyl- and 1-hydrogen-3-methylimidazolium chloroaluminate ionic liquids. J Chem Eng Data 58(1):32–42. doi:10.1021/je3004904

    CAS  Google Scholar 

  146. MacFarlane DR, Golding J, Forsyth S, Forsyth M, Deacon GB (2001) Low viscosity ionic liquids based on organic salts of the dicyanamide anion. Chem Commun 16:1430–1431

    Google Scholar 

  147. Fendt S, Padmanabhan S, Blanch HW, Prausnitz JM (2011) Viscosities of acetate or chloride-based ionic liquids and some of their mixtures with water or other common solvents. J Chem Eng Data 56(1):31–34

    CAS  Google Scholar 

  148. Wang P, Zakeeruddin SM, Grätzel M, Kantlehner W, Mezger J, Stoyanov EV, Scherr O (2004) Novel room temperature ionic liquids of hexaalkyl substituted guanidinium salts for dye-sensitized solar cells. Appl Phys A Mater Sci Process 79(1):73–77

    CAS  Google Scholar 

  149. Wang P, Wenger B, Humphry-Baker R, Moser J-E, Teuscher J, Kantlehner W, Mezger J, Stoyanov EV, Zakeeruddin SM, Grätzel M (2005) Charge separation and efficient light energy conversion in sensitized mesoscopic solar cells based on binary ionic liquids. J Am Chem Soc 127(18):6850–6856

    CAS  Google Scholar 

  150. Kuang D, Wang P, Ito S, Zakeeruddin SM, Grätzel M (2006) Stable mesoscopic dye-sensitized solar cells based on tetracyanoborate ionic liquid electrolyte. J Am Chem Soc 128(24):7732–7733

    CAS  Google Scholar 

  151. Kuang D, Klein C, Zhang Z, Ito S, Moser J-E, Zakeeruddin SM, Grätzel M (2007) Stable, high-efficiency ionic-liquid-based mesoscopic dye-sensitized solar cells. Small 3(12):2094–2102

    CAS  Google Scholar 

  152. Wang P, Zakeeruddin SM, Humphry-Baker R, Grätzel M (2004) A binary ionic liquid electrolyte to achieve > =7 % power conversion efficiencies in dye-sensitized solar cells. Chem Mater 16(14):2694–2696

    CAS  Google Scholar 

  153. Weingarth D, Czekaj I, Fei Z, Foelske-Schmitz A, Dyson PJ, Wokaun A, Kötz R (2012) Electrochemical stability of imidazolium based ionic liquids containing cyano groups in the anion: a cyclic voltammetry, XPS and DFT study. J Electrochem Soc 159(7):H611–H615. doi:10.1149/2.001207jes

    CAS  Google Scholar 

  154. Abbott AP, Capper G, Davies DL, Rasheed RK, Tambyrajah V (2003) Novel solvent properties of choline chloride/urea mixtures. Chem Commun (1):70–71

    Google Scholar 

  155. Abbott AP, Boothby D, Capper G, Davies DL, Rasheed RK (2004) Deep eutectic solvents formed between choline chloride and carboxylic acids: versatile alternatives to ionic liquids. J Am Chem Soc 126:9142–9147

    CAS  Google Scholar 

  156. Abbott AP, Capper G, Gray S (2006) Design of improved deep eutectic solvents using hole theory. ChemPhysChem 7:803–806

    CAS  Google Scholar 

  157. Zhao H, Baker GA (2013) Ionic liquids and deep eutectic solvents for biodiesel synthesis: a review. J Chem Tech Biotechnol 88(1):3–12. doi:10.1002/jctb.3935

    CAS  Google Scholar 

  158. Abbott AP, Capper G, Swain BG, Wheeler DA (2005) Electropolishing of stainless steel in an ionic liquid. Trans Inst Metal Finishing 83(1):51–53

    CAS  Google Scholar 

  159. Abbott AP, Capper G, McKenzie KJ, Ryder KS (2007) Electrodeposition of zinc–tin alloys from deep eutectic solvents based on choline chloride. J Electroanal Chem 599(2):288–294

    CAS  Google Scholar 

  160. Haerens K, Matthijs E, Chmielarz A, Van der Bruggen B (2009) The use of ionic liquids based on choline chloride for metal deposition: a green alternative? J Environ Manage 90(11):3245–3252

    CAS  Google Scholar 

  161. Abbott AP, McKenzie KJ (2006) Application of ionic liquids to the electrodeposition of metals. Phys Chem Chem Phys 8:4265–4279

    CAS  Google Scholar 

  162. Abbott AP, Ryder KS, König U (2008) Electrofinishing of metals using eutectic based ionic liquids. Trans Inst Metal Finishing 86(4):196–204

    CAS  Google Scholar 

  163. Endres F, MacFarlane DR, Abbott AP (2008) Electrodeposition from ionic liquids. Wiley, Weinheim

    Google Scholar 

  164. Mele C, Catalano M, Taurino A, Bozzini B (2013) Electrochemical fabrication of nanoporous gold-supported manganese oxide nanowires based on electrodeposition from eutectic urea/choline chloride ionic liquid. Electrochim Acta 87:918–924. doi:10.1016/j.electacta.2012.09.038

    CAS  Google Scholar 

Download references

Acknowledgments

The author acknowledges the supports provided by the Henry Dreyfus Teacher-Scholar Award (2012), ACS-PRF (54875-UR9), NIH MBRS-RISE grant (1R25GM096956), and NIH NIBIB contract award (HHSN268201200011C).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hua Zhao .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Zhao, H. (2015). Task-Specific Ionic Liquids for Electrochemical Applications. In: Torriero, A. (eds) Electrochemistry in Ionic Liquids. Springer, Cham. https://doi.org/10.1007/978-3-319-13485-7_8

Download citation

Publish with us

Policies and ethics