Skip to main content

The Role of Mesoaccumbens Dopamine in Nicotine Dependence

  • Chapter
  • First Online:
The Neuropharmacology of Nicotine Dependence

Part of the book series: Current Topics in Behavioral Neurosciences ((CTBN,volume 24))

Abstract

There is abundant evidence that the dopamine (DA) neurons that project to the nucleus accumbens play a central role in neurobiological mechanisms underpinning drug dependence. This chapter considers the ways in which these projections facilitate the addiction to nicotine and tobacco. It focuses on the complimentary roles of the two principal subdivisions of the nucleus accumbens, the accumbal core and shell, in the acquisition and maintenance of nicotine-seeking behavior. The ways in which tonic and phasic firing of the neurons contributes to the ways in which the accumbens mediate the behavioral responses to nicotine are also considered. Experimental studies suggest that nicotine has relatively weak addictive properties which are insufficient to explain the powerful addictive properties of tobacco smoke. This chapter discusses hypotheses that seek to explain this conundrum. They implicate both discrete sensory stimuli closely paired with the delivery of tobacco smoke and contextual stimuli habitually associated with the delivery of the drug. The mechanisms by which each type of stimulus influence tobacco dependence are hypothesized to depend upon the increased DA release and overflow, respectively, in the two subdivisions of the accumbens. It is suggested that a majority of pharmacotherapies for tobacco dependence are not more successful because they fail to address this important aspect of the dependence.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alderson HL, Latimer MP, Winn P (2006) Intravenous self-administration of nicotine is altered by lesions of the posterior, but not anterior, pedunculopontine tegmental nucleus. Eur J Neurosci 23:2169–2175

    PubMed  Google Scholar 

  • Aragona BJ, Cleaveland NA, Stuber GD, Day JJ, Carelli RM, Wightman RM (2008) Preferential enhancement of dopamine transmission within the nucleus accumbens shell by cocaine is attributable to a direct increase in phasic dopamine release events. J Neurosci 28:8821–8831

    CAS  PubMed Central  PubMed  Google Scholar 

  • Balfour DJ (2004) The neurobiology of tobacco dependence: a preclinical perspective on the role of the dopamine projections to the nucleus accumbens. Nicotine Tob Res 6:899–912

    CAS  PubMed  Google Scholar 

  • Balfour DJ (2009) The neuronal pathways mediating the behavioral and addictive properties of nicotine. Hand Exp Pharmacol 192:209–233

    CAS  Google Scholar 

  • Balfour DJ, Birrell CE, Moran RJ, Benwell ME (1996) Effects of acute D-CPPene on mesoaccumbens dopamine responses to nicotine in the rat. Eur J Pharmacol 316:153–156

    CAS  PubMed  Google Scholar 

  • Balfour DJ, Benwell ME, Birrell CE, Kelly RJ, Al-Aloul M (1998) Sensitization of the mesoaccumbens dopamine response to nicotine. Pharmacol Biochem Behav 59:1021–1030

    CAS  PubMed  Google Scholar 

  • Balfour DJ, Wright AE, Benwell ME, Birrell CE (2000) The putative role of extra-synaptic mesolimbic dopamine in the neurobiology of nicotine dependence. Behav Brain Res 113:73–83

    CAS  PubMed  Google Scholar 

  • Bassareo V, De Luca MA, Di Chiara G (2007) Differential impact of pavlovian drug conditioned stimuli on in vivo dopamine transmission in the rat accumbens shell and core and in the prefrontal cortex. Psychopharmacology 191:689–703

    CAS  PubMed  Google Scholar 

  • Beard E, McNeill A, Aveyard P, Fidler J, Michie S, West R (2013) Association between use of nicotine replacement therapy for harm reduction and smoking cessation: a prospective study of English smokers. Tob Control 22:118–122

    PubMed  Google Scholar 

  • Benwell ME, Balfour DJ (1992) The effects of acute and repeated nicotine treatment on nucleus accumbens dopamine and locomotor activity. Br J Pharmacol 105:849–856

    CAS  PubMed Central  PubMed  Google Scholar 

  • Benwell ME, Balfour DJ (1997) Regional variation in the effects of nicotine on catecholamine overflow in rat brain. Eur J Pharmacol 325:13–20

    CAS  PubMed  Google Scholar 

  • Benwell ME, Balfour DJ, Birrell CE (1995) Desensitization of the nicotine-induced mesolimbic dopamine responses during constant infusion with nicotine. Br J Pharmacol 114:454–460

    CAS  PubMed Central  PubMed  Google Scholar 

  • Benwell ME, Holtom PE, Moran RJ, Balfour DJ (1996) Neurochemical and behavioural interactions between ibogaine and nicotine in the rat. Br J Pharmacol 117:743–749

    CAS  PubMed Central  PubMed  Google Scholar 

  • Benowitz NC, Porcheth, Jacob P (1990) Pharmacokinetics metabolism and pharmacodynamics of nicotine. In: Wonnacott S, Russell MAH, Stolerman IP (eds). Niconne psychopharmacology: molecular cellular and behavioural aspects. Oxford University Press, Oxford, pp 112–157

    Google Scholar 

  • Bespalov AY, Dravolina OA, Sukhanov I, Zakharova E, Blokhina E, Zvartau E, Danysz W, van Heeke G, Markou A (2005) Metabotropic glutamate receptor (mGluR5) antagonist MPEP attenuated cue- and schedule-induced reinstatement of nicotine self-administration behavior in rats. Neuropharmacology 491:167–178

    CAS  PubMed  Google Scholar 

  • Bevins RA, Palmatier MI (2003) Nicotine-conditioned locomotor sensitization in rats: assessment of the US-preexposure effect. Behav Brain Res 143:65–74

    CAS  PubMed  Google Scholar 

  • Birrell CE, Balfour DJ (1998) The influence of nicotine pretreatment on mesoaccumbens dopamine overflow and locomotor responses to D-amphetamine. Psychopharmacology 140:142–149

    CAS  PubMed  Google Scholar 

  • Bossert JM, Poles GC, Wihbey KA, Koya E, Shaham Y (2007) Differential effects of blockade of dopamine D1-family receptors in nucleus accumbens core or shell on reinstatement of heroin seeking induced by contextual and discrete cues. J Neurosci 27:12655–12663

    CAS  PubMed Central  PubMed  Google Scholar 

  • Boye SM, Grant RJ, Clarke PB (2001) Disruption of dopaminergic neurotransmission in nucleus accumbens core inhibits the locomotor stimulant effects of nicotine and D-amphetamine in rats. Neuropharmacology 40:792–805

    CAS  PubMed  Google Scholar 

  • Bozarth MA, Wise RA (1984) Anatomically distinct opiate receptor fields mediate reward and physical dependence. Science 224:516–517

    CAS  PubMed  Google Scholar 

  • Brauer LH, Behm FM, Lane JD, Westman EC, Perkins C, Rose JE (2001) Individual differences in smoking reward from de-nicotinized cigarettes. Nicotine Tob Res 3:101–109

    CAS  PubMed  Google Scholar 

  • Brazell MP, Mitchell SN, Joseph MH, Gray JA (1990) Acute administration of nicotine increases the in vivo extracellular levels of dopamine, 3,4-dihydroxyphenylacetic acid and ascorbic acid preferentially in the nucleus accumbens of the rat: comparison with caudate-putamen. Neuropharmacology 29:1177–1185

    CAS  PubMed  Google Scholar 

  • Brody AL (2006) Functional brain imaging of tobacco use and dependence. J Psychiatr Res 40:404–418

    PubMed Central  PubMed  Google Scholar 

  • Brody AL, Olmstead RE, London ED, Farahi J, Meyer JH, Grossman P, Lee GS, Huang J, Hahn EL, Mandelkern MA (2004) Smoking-induced ventral striatum dopamine release. Am J Psychiatry 161:1211–1218

    PubMed  Google Scholar 

  • Brody AL, London ED, Olmstead RE, Allen-Martinez Z, Shulenberger S, Costello MR, Abrams AL, Scheibal D, Farahi J, Shoptaw S, Mandelkern MA (2010) Smoking-induced change in intrasynaptic dopamine concentration: effect of treatment for tobacco dependence. Psychiatry Res 183:218–224

    CAS  PubMed Central  PubMed  Google Scholar 

  • Brower VG, Fu Y, Matta SG, Sharp BM (2002) Rat strain differences in nicotine self-administration using an unlimited access paradigm. Brain Res 930:12–20

    CAS  PubMed  Google Scholar 

  • Bruijnzeel AW, Markou A (2004) Adaptations in cholinergic transmission in the ventral tegmental area associated with the affective signs of nicotine withdrawal in rats. Neuropharmacology 47:572–579

    CAS  PubMed  Google Scholar 

  • Cadoni C, Di Chiara G (1999) Reciprocal changes in dopamine responsiveness in the nucleus accumbens shell and core and in the dorsal caudate-putamen in rats sensitized to morphine. Neuroscience 90:447–455

    CAS  PubMed  Google Scholar 

  • Cadoni C, Di Chiara G (2000) Differential changes in accumbens shell and core dopamine in behavioral sensitization to nicotine. Eur J Pharmacol 387:R23–R25

    CAS  PubMed  Google Scholar 

  • Cadoni C, Solinas M, Di Chiara G (2000) Psychostimulant sensitization: differential changes in accumbal shell and core dopamine. Eur J Pharmacol 388:69–76

    CAS  PubMed  Google Scholar 

  • Cadoni C, Muto T, Di Chiara G (2009) Nicotine differentially affects dopamine transmission in the nucleus accumbens shell and core of Lewis and Fischer 344 rats. Neuropharmacology 57:496–501

    CAS  PubMed  Google Scholar 

  • Caggiula AR, Donny EC, White AR, Chaudhri N, Booth S, Gharib MA, Hoffman A, Perkins KA, Sved AF (2001) Cue dependency of nicotine self-administration and smoking. Pharmacol Biochem Behav 70:515–530

    CAS  PubMed  Google Scholar 

  • Caggiula AR, Donny EC, Chaudhri N, Perkins KA, Evans-Martin FF, Sved AF (2002) Importance of nonpharmacological factors in nicotine self-administration. Physiol Behav 77:683–687

    CAS  PubMed  Google Scholar 

  • Cahill K, Stead LF, Lancaster T (2012) Nicotine receptor partial agonists for smoking cessation. The Cochrane database of systematic reviews 4: CD006103

    Google Scholar 

  • Cahill K, Stevens S, Perera R, Lancaster T (2013) Pharmacological interventions for smoking cessation: an overview and network meta-analysis. Cochrane Database Syst Rev 5:CD009329

    Google Scholar 

  • Cannon CM, Palmiter RD (2003) Reward without dopamine. J Neurosci 23:10827–10831

    CAS  PubMed  Google Scholar 

  • Caponnetto P, Campagna D, Papale G, Russo C, Polosa R (2012) The emerging phenomenon of electronic cigarettes. Exp Rev Resp Med 6:63–74

    Google Scholar 

  • Carboni E, Bortone L, Giua C, Di Chiara G (2000) Dissociation of physical abstinence signs from changes in extracellular dopamine in the nucleus accumbens and in the prefrontal cortex of nicotine dependent rats. Drug Alcohol Depend 58:93–102

    CAS  PubMed  Google Scholar 

  • Chaudhri N, Caggiula AR, Donny EC, Palmatier MI, Liu X, Sved AF (2006) Complex interactions between nicotine and nonpharmacological stimuli reveal multiple roles for nicotine in reinforcement. Psychopharmacology 184:353–366

    CAS  PubMed  Google Scholar 

  • Chaudhri N, Sahuque LL, Schairer WW, Janak PH (2010) Separable roles of the nucleus accumbens core and shell in context—and cue-induced alcohol-seeking. Neuropsychopharmacology 35:783–791

    CAS  PubMed Central  PubMed  Google Scholar 

  • Chergui K, Charlety PJ, Akaoka H, Saunier CF, Brunet JL, Buda M, Svensson TH, Chouvet G (1993) Tonic activation of NMDA receptors causes spontaneous burst discharge of rat midbrain dopamine neurons in vivo. Eur J Neurosci 5:137–144

    CAS  PubMed  Google Scholar 

  • Clarke PB, Kumar R (1983) The effects of nicotine on locomotor activity in non-tolerant and tolerant rats. Br J Pharmacol 78:329–337

    CAS  PubMed Central  PubMed  Google Scholar 

  • Clarke PB, Fu DS, Jakubovic A, Fibiger HC (1988) Evidence that mesolimbic dopaminergic activation underlies the locomotor stimulant action of nicotine in rats. J Pharmacol Exp Ther 246:701–708

    CAS  PubMed  Google Scholar 

  • Coen KM, Adamson KL, Corrigall WA (2009) Medication-related pharmacological manipulations of nicotine self-administration in the rat maintained on fixed- and progressive-ratio schedules of reinforcement. Psychopharmacology 201:557–568

    CAS  PubMed  Google Scholar 

  • Cohen C, Perrault G, Voltz C, Steinberg R, Soubrie P (2002) SR141716, a central cannabinoid (CB(1)) receptor antagonist, blocks the motivational and dopamine-releasing effects of nicotine in rats. Behav Pharmacol 13:451–463

    CAS  PubMed  Google Scholar 

  • Cohen C, Kodas E, Griebel G (2005) CB1 receptor antagonists for the treatment of nicotine addiction. Pharmacol Biochem Behav 81:387–395

    CAS  PubMed  Google Scholar 

  • Corrigall WA, Coen KM (1989) Nicotine maintains robust self-administration in rats on a limited-access schedule. Psychopharmacology 99:473–478

    CAS  PubMed  Google Scholar 

  • Corrigall WA, Franklin KB, Coen KM, Clarke PB (1992) The mesolimbic dopaminergic system is implicated in the reinforcing effects of nicotine. Psychopharmacology 107:285–289

    CAS  PubMed  Google Scholar 

  • Corrigall WA, Coen KM, Adamson KL (1994) Self-administered nicotine activates the mesolimbic dopamine system through the ventral tegmental area. Brain Res 653:278–284

    CAS  PubMed  Google Scholar 

  • Corrigall WA, Coen KM, Zhang J, Adamson KL (2001) GABA mechanisms in the pedunculopontine tegmental nucleus influence particular aspects of nicotine self-administration selectively in the rat. Psychopharmacology 158:190–197

    CAS  PubMed  Google Scholar 

  • Corrigall WA, Coen KM, Zhang J, Adamson L (2002) Pharmacological manipulations of the pedunculopontine tegmental nucleus in the rat reduce self-administration of both nicotine and cocaine. Psychopharmacology 160:198–205

    CAS  PubMed  Google Scholar 

  • Crippens D, Robinson TE (1994) Withdrawal from morphine or amphetamine: different effects on dopamine in the ventral-medial striatum studied with microdialysis. Brain Res 650:56–62

    CAS  PubMed  Google Scholar 

  • Crippens D, Camp DM, Robinson TE (1993) Basal extracellular dopamine in the nucleus accumbens during amphetamine withdrawal: a ‘no net flux’ microdialysis study. Neurosci Lett 164:145–148

    CAS  PubMed  Google Scholar 

  • Crombag HS, Bossert JM, Koya E, Shaham Y (2008) Context-induced relapse to drug seeking: a review. Philos Trans R Soc Biol Sci 363:3233–3243

    Google Scholar 

  • Cryan JF, Hoyer D, Markou A (2003) Withdrawal from chronic amphetamine induces depressive-like behavioral effects in rodents. Biol Psychiatry 54:49–58

    CAS  PubMed  Google Scholar 

  • Dackis CA, Gold MS (1985) New concepts in cocaine addiction: the dopamine depletion hypothesis. Neurosci Biobehav Rev 9:469–477

    CAS  PubMed  Google Scholar 

  • Dagher A, Bleicher C, Aston JA, Gunn RN, Clarke PB, Cumming P (2001) Reduced dopamine D1 receptor binding in the ventral striatum of cigarette smokers. Synapse 42:48–53

    CAS  PubMed  Google Scholar 

  • Damsma G, Day J, Fibiger HC (1989) Lack of tolerance to nicotine-induced dopamine release in the nucleus accumbens. Eur J Pharmacol 168:363–368

    CAS  PubMed  Google Scholar 

  • Dawe S, Gerada C, Russell MA, Gray JA (1995) Nicotine intake in smokers increases following a single dose of haloperidol. Psychopharmacology 117:110–115

    CAS  PubMed  Google Scholar 

  • Di Chiara G (1995) The role of dopamine in drug abuse viewed from the perspective of its role in motivation. Drug Alcohol Depend 38:95–137

    PubMed  Google Scholar 

  • Di Chiara G (1999) Drug addiction as dopamine-dependent associative learning disorder. Eur J Pharmacol 375:13–30

    PubMed  Google Scholar 

  • Di Chiara G (2000) Role of dopamine in the behavioural actions of nicotine related to addiction. Eur J Pharmacol 393:295–314

    PubMed  Google Scholar 

  • Di Chiara G (2002) Nucleus accumbens shell and core dopamine: differential role in behavior and addiction. Behav Brain Res 137:75–114

    PubMed  Google Scholar 

  • Di Chiara G, Bassareo V (2007) Reward system and addiction: what dopamine does and doesn’t do. Curr Opin Pharmacol 7:69–76

    PubMed  Google Scholar 

  • Di Chiara G, Imperato A (1988) Drugs abused by humans preferentially increase synaptic dopamine concentrations in the mesolimbic system of freely moving rats. Proc Natl Acad Sci USA 85:5274–5278

    Google Scholar 

  • Di Chiara G, Bassareo V, Fenu S, De Luca MA, Spina L, Cadoni C, Acquas E, Carboni E, Valentini V, Lecca D (2004) Dopamine and drug addiction: the nucleus accumbens shell connection. Neuropharmacology 47:227–241

    PubMed  Google Scholar 

  • Diergaarde L, de Vries W, Raaso H, Schoffelmeer AN, De Vries TJ (2008) Contextual renewal of nicotine seeking in rats and its suppression by the cannabinoid-1 receptor antagonist Rimonabant (SR141716A). Neuropharmacology 55:712–716

    CAS  PubMed  Google Scholar 

  • Dockrell M, Morrison R, Bauld L, McNeill A (2013) E-cigarettes: prevalence and attitudes in Great Britain. Nicotine Tob Res 15:1737–1744

    PubMed Central  PubMed  Google Scholar 

  • Donny EC, Chaudhri N, Caggiula AR, Evans-Martin FF, Booth S, Gharib MA, Clements LA, Sved AF (2003) Operant responding for a visual reinforcer in rats is enhanced by noncontingent nicotine: implications for nicotine self-administration and reinforcement. Psychopharmacology 169:68–76

    CAS  PubMed  Google Scholar 

  • D’Souza MS, Markou A (2010) Neural substrates of psychostimulant withdrawal-induced anhedonia. Curr Top Behav Neurosci 3:119–178

    PubMed  Google Scholar 

  • D’Souza MS, Markou A (2011) Metabotropic glutamate receptor 5 antagonist 2-methyl-6-(phenylethynyl)pyridine (MPEP) microinfusions into the nucleus accumbens shell or ventral tegmental area attenuate the reinforcing effects of nicotine in rats. Neuropharmacology 61:1399–1405

    PubMed Central  PubMed  Google Scholar 

  • D’Souza MS, Markou A (2014) Differential role of N-methyl-D-aspartate receptor-mediated glutamate transmission in the nucleus accumbens shell and core in nicotine seeking in rats. Eur J Neurosci

    Google Scholar 

  • Epping-Jordan MP, Watkins SS, Koob GF, Markou A (1998) Dramatic decreases in brain reward function during nicotine withdrawal. Nature 393:76–79

    CAS  PubMed  Google Scholar 

  • Etter JF, Bullen C (2011) Electronic cigarette: users profile, utilization, satisfaction and perceived efficacy. Addiction 106:2017–2028

    PubMed  Google Scholar 

  • Fagen ZM, Mansvelder HD, Keath JR, McGehee DS (2003) Short- and long-term modulation of synaptic inputs to brain reward areas by nicotine. Ann NY Acad Sci 1003:185–195

    CAS  PubMed  Google Scholar 

  • Fagerstrom K, Eissenberg T (2012) Dependence on tobacco and nicotine products: a case for product-specific assessment. Nicotine Tob Res 14:1382–1390

    PubMed Central  PubMed  Google Scholar 

  • Farquhar MJ, Latimer MP, Winn P (2012) Nicotine self-administered directly into the VTA by rats is weakly reinforcing but has strong reinforcement enhancing properties. Psychopharmacology 220:43–54

    CAS  PubMed  Google Scholar 

  • Floresco SB (2007) Dopaminergic regulation of limbic-striatal interplay. Journal Psychiatry Neurosci 32:400–411

    Google Scholar 

  • Floresco SB, Todd CL, Grace AA (2001) Glutamatergic afferents from the hippocampus to the nucleus accumbens regulate activity of ventral tegmental area dopamine neurons. J Neurosci 21:4915–4922

    CAS  PubMed  Google Scholar 

  • Floresco SB, West AR, Ash B, Moore H, Grace AA (2003) Afferent modulation of dopamine neuron firing differentially regulates tonic and phasic dopamine transmission. Nat Neurosci 6:968–973

    CAS  PubMed  Google Scholar 

  • Floresco SB, St Onge JR, Ghods-Sharifi S, Winstanley CA (2008) Cortico-limbic-striatal circuits subserving different forms of cost-benefit decision making. Cogn Affect Behav Neurosci 8:375–389

    PubMed  Google Scholar 

  • Fowler JS, Logan J, Wang GJ, Volkow ND (2003) Monoamine oxidase and cigarette smoking. Neurotoxicology 24:75–82

    CAS  PubMed  Google Scholar 

  • Fu Y, Matta SG, Gao W, Brower VG, Sharp BM (2000) Systemic nicotine stimulates dopamine release in nucleus accumbens: re-evaluation of the role of N-methyl-D-aspartate receptors in the ventral tegmental area. J Pharmacol Exp Ther 294:458–465

    CAS  PubMed  Google Scholar 

  • Fuxe K, Dahlstrom AB, Jonsson G, Marcellino D, Guescini M, Dam M, Manger P, Agnati L (2010) The discovery of central monoamine neurons gave volume transmission to the wired brain. Prog Neurobiol 90:82–100

    CAS  PubMed  Google Scholar 

  • Garris PA, Wightman RM (1994) Different kinetics govern dopaminergic transmission in the amygdala, prefrontal cortex, and striatum: an in vivo voltammetric study. J Neurosci 14:442–450

    CAS  PubMed  Google Scholar 

  • Gerrits MA, Van Ree JM (1996) Effect of nucleus accumbens dopamine depletion on motivational aspects involved in initiation of cocaine and heroin self-administration in rats. Brain Res 713:114–124

    CAS  PubMed  Google Scholar 

  • Glick SD, Maisonneuve IM (2000) Development of novel medications for drug addiction. The legacy of an African shrub. Ann NY Acad Sci 909:88–103

    CAS  PubMed  Google Scholar 

  • Gold MS, Dackis CA (1984) New insights and treatments: opiate withdrawal and cocaine addiction. Clin Ther 7:6–21

    CAS  PubMed  Google Scholar 

  • Grace AA (1991) Phasic versus tonic dopamine release and the modulation of dopamine system responsivity: a hypothesis for the etiology of schizophrenia. Neuroscience 41:1–24

    CAS  PubMed  Google Scholar 

  • Grace AA (2000) The tonic/phasic model of dopamine system regulation and its implications for understanding alcohol and psychostimulant craving. Addiction 95:S119–S128

    PubMed  Google Scholar 

  • Grace AA, Bunney BS (1984a) The control of firing pattern in nigral dopamine neurons: burst firing. J Neurosci 4:2877–2890

    CAS  PubMed  Google Scholar 

  • Grace AA, Bunney BS (1984b) The control of firing pattern in nigral dopamine neurons: single spike firing. J Neurosci 4:2866–2876

    CAS  PubMed  Google Scholar 

  • Grace AA, Floresco SB, Goto Y, Lodge DJ (2007) Regulation of firing of dopaminergic neurons and control of goal-directed behaviors. Trends Neurosci 30:220–227

    CAS  PubMed  Google Scholar 

  • Grenhoff J, Aston-Jones G, Svensson TH (1986) Nicotinic effects on the firing pattern of midbrain dopamine neurons. Acta Physiol Scand 128:351–358

    CAS  PubMed  Google Scholar 

  • Grieder TE, George O, Tan H, George SR, Le Foll B, Laviolette SR, van der Kooy D (2012) Phasic D1 and tonic D2 dopamine receptor signaling double dissociate the motivational effects of acute nicotine and chronic nicotine withdrawal. Proc Natl Acad Sci USA 109:3101–3106

    Google Scholar 

  • Guillem K, Vouillac C, Azar MR, Parsons LH, Koob GF, Cador M, Stinus L (2005) Monoamine oxidase inhibition dramatically increases the motivation to self-administer nicotine in rats. J Neurosci 25:8593–8600

    CAS  PubMed  Google Scholar 

  • Guillem K, Vouillac C, Azar MR, Parsons LH, Koob GF, Cador M, Stinus L (2006) Monoamine oxidase A rather than monoamine oxidase B inhibition increases nicotine reinforcement in rats. Eur J Neurosci 24:3532–3540

    PubMed  Google Scholar 

  • Hajek P, McRobbie H, Myers K (2013) Efficacy of cytisine in helping smokers quit: systematic review and meta-analysis. Thorax 68:1037–1042

    PubMed  Google Scholar 

  • Hashimoto K, Malchow B, Falkai P, Schmitt A (2013) Glutamate modulators as potential therapeutic drugs in schizophrenia and affective disorders. Eur Arch Psychiatry Clin Neurosci 263:367–377

    PubMed  Google Scholar 

  • Heien ML, Wightman RM (2006) Phasic dopamine signaling during behavior, reward, and disease states. CNS Neurol Disord: Drug Targets 5:99–108

    CAS  Google Scholar 

  • Heimer L, Zahm DS, Churchill L, Kalivas PW, Wohltmann C (1991) Specificity in the projection patterns of accumbal core and shell in the rat. Neuroscience 41:89–125

    CAS  PubMed  Google Scholar 

  • Hersch SM, Yi H, Heilman CJ, Edwards RH, Levey AI (1997) Subcellular localization and molecular topology of the dopamine transporter in the striatum and substantia nigra. J Comp Neurol 388:211–227

    CAS  PubMed  Google Scholar 

  • Hildebrand BE, Svensson TH (2000) Intraaccumbal mecamylamine infusion does not affect dopamine output in the nucleus accumbens of chronically nicotine-treated rats. J Neural Transm 107:861–872

    CAS  PubMed  Google Scholar 

  • Hildebrand BE, Nomikos GG, Bondjers C, Nisell M, Svensson TH (1997) Behavioral manifestations of the nicotine abstinence syndrome in the rat: peripheral versus central mechanisms. Psychopharmacology 129:348–356

    CAS  PubMed  Google Scholar 

  • Hildebrand BE, Nomikos GG, Hertel P, Schilstrom B, Svensson TH (1998) Reduced dopamine output in the nucleus accumbens but not in the medial prefrontal cortex in rats displaying a mecamylamine-precipitated nicotine withdrawal syndrome. Brain Res 779:214–225

    CAS  PubMed  Google Scholar 

  • Hollander JA, Carelli RM (2007) Cocaine-associated stimuli increase cocaine seeking and activate accumbens core neurons after abstinence. J Neurosci 27:3535–3539

    CAS  PubMed  Google Scholar 

  • Ikemoto S (2003) Involvement of the olfactory tubercle in cocaine reward: intracranial self-administration studies. J Neurosci 23:9305–9311

    CAS  PubMed  Google Scholar 

  • Imperato A, Mulas A, Di Chiara G (1986) Nicotine preferentially stimulates dopamine release in the limbic system of freely moving rats. Eur J Pharmacol 132:337–338

    CAS  PubMed  Google Scholar 

  • Ito R, Dalley JW, Howes SR, Robbins TW, Everitt BJ (2000) Dissociation in conditioned dopamine release in the nucleus accumbens core and shell in response to cocaine cues and during cocaine-seeking behavior in rats. J Neurosci 20:7489–7495

    CAS  PubMed  Google Scholar 

  • Ito R, Dalley JW, Robbins TW, Everitt BJ (2002) Dopamine release in the dorsal striatum during cocaine-seeking behavior under the control of a drug-associated cue. J Neurosci 22:6247–6253

    CAS  PubMed  Google Scholar 

  • Ito R, Robbins TW, Everitt BJ (2004) Differential control over cocaine-seeking behavior by nucleus accumbens core and shell. Nat Neurosci 7:389–397

    CAS  PubMed  Google Scholar 

  • Ito R, Robbins TW, Pennartz CM, Everitt BJ (2008) Functional interaction between the hippocampus and nucleus accumbens shell is necessary for the acquisition of appetitive spatial context conditioning. J Neurosci 28:6950–6959

    CAS  PubMed Central  PubMed  Google Scholar 

  • Iyaniwura TT, Wright AE, Balfour DJ (2001) Evidence that mesoaccumbens dopamine and locomotor responses to nicotine in the rat are influenced by pretreatment dose and strain. Psychopharmacology 158:73–79

    CAS  PubMed  Google Scholar 

  • Johnston AJ, Ascher J, Leadbetter R, Schmith VD, Patel DK, Durcan M, Bentley B (2002) Pharmacokinetic optimisation of sustained-release bupropion for smoking cessation. Drugs 62:11–24

    CAS  PubMed  Google Scholar 

  • Jones SR, O’Dell SJ, Marshall JF, Wightman RM (1996) Functional and anatomical evidence for different dopamine dynamics in the core and shell of the nucleus accumbens in slices of rat brain. Synapse 23:224–231

    CAS  PubMed  Google Scholar 

  • Keck TM, Yang HJ, Bi GH, Huang Y, Zhang HY, Srivastava R, Gardner EL, Newman AH, Xi ZX (2013) Fenobam sulfate inhibits cocaine-taking and cocaine-seeking behavior in rats: implications for addiction treatment in humans. Psychopharmacology 229:253–265

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kenny PJ, Markou A (2001) Neurobiology of the nicotine withdrawal syndrome. Pharmacol Biochem Behav 70:531–549

    CAS  PubMed  Google Scholar 

  • Kenny PJ, Paterson NE, Boutrel B, Semenova S, Harrison AA, Gasparini F, Koob GF, Skoubis PD, Markou A (2003) Metabotropic glutamate 5 receptor antagonist MPEP decreased nicotine and cocaine self-administration but not nicotine and cocaine-induced facilitation of brain reward function in rats. Ann NY Acad Sci 1003:415–418

    CAS  PubMed  Google Scholar 

  • Kenny PJ, Chartoff E, Roberto M, Carlezon WA Jr, Markou A (2009) NMDA receptors regulate nicotine-enhanced brain reward function and intravenous nicotine self-administration: role of the ventral tegmental area and central nucleus of the amygdala. Neuropsychopharmacology 34:266–281

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kraiczi H, Hansson A, Perfekt R (2011) Single-dose pharmacokinetics of nicotine when given with a novel mouth spray for nicotine replacement therapy. Nicotine Tob Res 13:1176–1182

    CAS  PubMed  Google Scholar 

  • Kyerematen GA, Taylor LH, deBethizy JD, Vesell ES (1988) Pharmacokinetics of nicotine and 12 metabolites in the rat. Application of a new radiometric high performance liquid chromatography assay. Drug Metab Dispos 16:125–129

    CAS  PubMed  Google Scholar 

  • Lanca AJ, Adamson KL, Coen KM, Chow BL, Corrigall WA (2000) The pedunculopontine tegmental nucleus and the role of cholinergic neurons in nicotine self-administration in the rat: a correlative neuroanatomical and behavioral study. Neuroscience 96:735–742

    CAS  PubMed  Google Scholar 

  • Le Foll B, Goldberg SR (2005) Control of the reinforcing effects of nicotine by associated environmental stimuli in animals and humans. Trends Pharmacol Sci 26:287–293

    PubMed  Google Scholar 

  • Lecca D, Cacciapaglia F, Valentini V, Gronli J, Spiga S, Di Chiara G (2006) Preferential increase of extracellular dopamine in the rat nucleus accumbens shell as compared to that in the core during acquisition and maintenance of intravenous nicotine self-administration. Psychopharmacology 184:435–446

    CAS  PubMed  Google Scholar 

  • Lecca D, Cacciapaglia F, Valentini V, Acquas E, Di Chiara G (2007a) Differential neurochemical and behavioral adaptation to cocaine after response contingent and noncontingent exposure in the rat. Psychopharmacology 191:653–667

    CAS  PubMed  Google Scholar 

  • Lecca D, Valentini V, Cacciapaglia F, Acquas E, Di Chiara G (2007b) Reciprocal effects of response contingent and noncontingent intravenous heroin on in vivo nucleus accumbens shell versus core dopamine in the rat: a repeated sampling microdialysis study. Psychopharmacology 194:103–116

    CAS  PubMed  Google Scholar 

  • Legault M, Wise RA (1999) Injections of N-methyl-D-aspartate into the ventral hippocampus increase extracellular dopamine in the ventral tegmental area and nucleus accumbens. Synapse 31:241–249

    CAS  PubMed  Google Scholar 

  • LeSage MG, Keyler DE, Collins G, Pentel PR (2003) Effects of continuous nicotine infusion on nicotine self-administration in rats: relationship between continuously infused and self-administered nicotine doses and serum concentrations. Psychopharmacology 170:278–286

    CAS  PubMed  Google Scholar 

  • LeSage MG, Burroughs D, Dufek M, Keyler DE, Pentel PR (2004) Reinstatement of nicotine self-administration in rats by presentation of nicotine-paired stimuli, but not nicotine priming. Pharmacol Biochem Behav 79:507–513

    CAS  PubMed  Google Scholar 

  • Li W, Doyon WM, Dani JA (2011) Acute in vivo nicotine administration enhances synchrony among dopamine neurons. Biochem Pharmacol 82:977–983

    CAS  PubMed Central  PubMed  Google Scholar 

  • Livingstone PD, Wonnacott S (2009) Nicotinic acetylcholine receptors and the ascending dopamine pathways. Biochem Pharmacol 78:744–755

    CAS  PubMed  Google Scholar 

  • Lodge DJ, Grace AA (2006a) The hippocampus modulates dopamine neuron responsivity by regulating the intensity of phasic neuron activation. Neuropsychopharmacology 31:1356–1361

    CAS  PubMed  Google Scholar 

  • Lodge DJ, Grace AA (2006b) The laterodorsal tegmentum is essential for burst firing of ventral tegmental area dopamine neurons. Proc Natl Acad Sci USA 103:5167–5172

    Google Scholar 

  • Louis M, Clarke PB (1998) Effect of ventral tegmental 6-hydroxydopamine lesions on the locomotor stimulant action of nicotine in rats. Neuropharmacology 37:1503–1513

    CAS  PubMed  Google Scholar 

  • Lu XY, Ghasemzadeh MB, Kalivas PW (1999) Expression of glutamate receptor subunit/subtype messenger RNAS for NMDAR1, GLuR1, GLuR2 and mGLuR5 by accumbal projection neurons. Brain Res Mol Brain Res 63:287–296

    CAS  PubMed  Google Scholar 

  • Lyness WH, Friedle NM, Moore KE (1979) Destruction of dopaminergic nerve terminals in nucleus accumbens: effect on d-amphetamine self-administration. Pharmacol Biochem Behav 11:553–556

    CAS  PubMed  Google Scholar 

  • Malin DH (2001) Nicotine dependence: studies with a laboratory model. Pharmacol Biochem Behav 70:551–559

    CAS  PubMed  Google Scholar 

  • Malin DH, Goyarzu P (2009) Rodent models of nicotine withdrawal syndrome. Handb Exp Pharmacol 192:401–434

    CAS  PubMed  Google Scholar 

  • Malin DH, Lake JR, Newlin-Maultsby P, Roberts LK, Lanier JG, Carter VA, Cunningham JS, Wilson OB (1992) Rodent model of nicotine abstinence syndrome. Pharmacol Biochem Behav 43:779–784

    CAS  PubMed  Google Scholar 

  • Malin DH, Lake JR, Carter VA, Cunningham JS, Hebert KM, Conrad DL, Wilson OB (1994) The nicotinic antagonist mecamylamine precipitates nicotine abstinence syndrome in the rat. Psychopharmacology 115:180–184

    CAS  PubMed  Google Scholar 

  • Malin DH, Lake JR, Smith TD, Khambati HN, Meyers-Paal RL, Montellano AL, Jennings RE, Erwin DS, Presley SE, Perales BA (2006) Bupropion attenuates nicotine abstinence syndrome in the rat. Psychopharmacology 184:494–503

    CAS  PubMed  Google Scholar 

  • Mameli-Engvall M, Evrard A, Pons S, Maskos U, Svensson TH, Changeux JP, Faure P (2006) Hierarchical control of dopamine neuron-firing patterns by nicotinic receptors. Neuron 50:911–921

    CAS  PubMed  Google Scholar 

  • Mansvelder HD, McGehee DS (2000) Long-term potentiation of excitatory inputs to brain reward areas by nicotine. Neuron 27:349–357

    CAS  PubMed  Google Scholar 

  • Mansvelder HD, McGehee DS (2002) Cellular and synaptic mechanisms of nicotine addiction. J Neurobiol 53:606–617

    CAS  PubMed  Google Scholar 

  • Mansvelder HD, Keath JR, McGehee DS (2002) Synaptic mechanisms underlie nicotine-induced excitability of brain reward areas. Neuron 33:905–919

    CAS  PubMed  Google Scholar 

  • Markou A (2008) Review. Neurobiology of nicotine dependence. Philos Trans R Soc Lond B Biol Sci 363:3159–3168

    CAS  PubMed Central  PubMed  Google Scholar 

  • Markou A, Koob GF (1991) Postcocaine anhedonia. An animal model of cocaine withdrawal. Neuropsychopharmacology 4:17–26

    CAS  PubMed  Google Scholar 

  • Mascia P, Pistis M, Justinova Z, Panlilio LV, Luchicchi A, Lecca S, Scherma M, Fratta W, Fadda P, Barnes C, Redhi GH, Yasar S, Le Foll B, Tanda G, Piomelli D, Goldberg SR (2011) Blockade of nicotine reward and reinstatement by activation of alpha-type peroxisome proliferator-activated receptors. Biol Psychiatry 69:633–641

    CAS  PubMed Central  PubMed  Google Scholar 

  • Mereu G, Yoon KW, Boi V, Gessa GL, Naes L, Westfall TC (1987) Preferential stimulation of ventral tegmental area dopaminergic neurons by nicotine. Eur J Pharmacol 141:395–399

    CAS  PubMed  Google Scholar 

  • Mihalak KB, Carroll FI, Luetje CW (2006) Varenicline is a partial agonist at alpha4beta2 and a full agonist at alpha7 neuronal nicotinic receptors. Mol Pharmacol 70:801–805

    CAS  PubMed  Google Scholar 

  • Nirenberg MJ, Chan J, Pohorille A, Vaughan RA, Uhl GR, Kuhar MJ, Pickel VM (1997) The dopamine transporter: comparative ultrastructure of dopaminergic axons in limbic and motor compartments of the nucleus accumbens. J Neurosci 17:6899–6907

    CAS  PubMed  Google Scholar 

  • Nisell M, Nomikos GG, Svensson TH (1994a) Infusion of nicotine in the ventral tegmental area or the nucleus accumbens of the rat differentially affects accumbal dopamine release. Pharmacol Toxicol 75:348–352

    CAS  PubMed  Google Scholar 

  • Nisell M, Nomikos GG, Svensson TH (1994b) Systemic nicotine-induced dopamine release in the rat nucleus accumbens is regulated by nicotinic receptors in the ventral tegmental area. Synapse 16:36–44

    CAS  PubMed  Google Scholar 

  • Nunes EJ, Randall PA, Podurgiel S, Correa M, Salamone JD (2013) Nucleus accumbens neurotransmission and effort-related choice behavior in food motivation: effects of drugs acting on dopamine, adenosine, and muscarinic acetylcholine receptors. Neurosci Biobehav Rev 37:2015–2025

    CAS  PubMed  Google Scholar 

  • O’Connor EC, Parker D, Rollema H, Mead AN (2010) The alpha4beta2 nicotinic acetylcholine-receptor partial agonist varenicline inhibits both nicotine self-administration following repeated dosing and reinstatement of nicotine seeking in rats. Psychopharmacology 208:365–376

    PubMed  Google Scholar 

  • O’Dell LE, Khroyan TV (2009) Rodent models of nicotine reward: what do they tell us about tobacco abuse in humans? Pharmacol Biochem Behav 91:481–488

    PubMed Central  PubMed  Google Scholar 

  • Owesson-White CA, Roitman MF, Sombers LA, Belle AM, Keithley RB, Peele JL, Carelli RM, Wightman RM (2012) Sources contributing to the average extracellular concentration of dopamine in the nucleus accumbens. J Neurochem 121:252–262

    CAS  PubMed Central  PubMed  Google Scholar 

  • Palmatier MI, Evans-Martin FF, Hoffman A, Caggiula AR, Chaudhri N, Donny EC, Liu X, Booth S, Gharib M, Craven L, Sved AF (2006) Dissociating the primary reinforcing and reinforcement-enhancing effects of nicotine using a rat self-administration paradigm with concurrently available drug and environmental reinforcers. Psychopharmacology 184:391–400

    CAS  PubMed  Google Scholar 

  • Palmatier MI, Matteson GL, Black JJ, Liu X, Caggiula AR, Craven L, Donny EC, Sved AF (2007) The reinforcement enhancing effects of nicotine depend on the incentive value of non-drug reinforcers and increase with repeated drug injections. Drug Alcohol Depend 89:52–59

    CAS  PubMed Central  PubMed  Google Scholar 

  • Palmatier MI, Liu X, Donny EC, Caggiula AR, Sved AF (2008) Metabotropic glutamate 5 receptor (mGluR5) antagonists decrease nicotine seeking, but do not affect the reinforcement enhancing effects of nicotine. Neuropsychopharmacology 33:2139–2147

    CAS  PubMed Central  PubMed  Google Scholar 

  • Panagis G, Nisell M, Nomikos GG, Chergui K, Svensson TH (1996) Nicotine injections into the ventral tegmental area increase locomotion and Fos-like immunoreactivity in the nucleus accumbens of the rat. Brain Res 730:133–142

    CAS  PubMed  Google Scholar 

  • Paterson NE, Markou A (2004) Prolonged nicotine dependence associated with extended access to nicotine self-administration in rats. Psychopharmacology 173:64–72

    CAS  PubMed  Google Scholar 

  • Paterson NE, Markou A (2005) The metabotropic glutamate receptor 5 antagonist MPEP decreased break points for nicotine, cocaine and food in rats. Psychopharmacology 179:255–261

    CAS  PubMed  Google Scholar 

  • Paterson NE, Markou A (2007) Animal models and treatments for addiction and depression co-morbidity. Neurotox Res 11:1–32

    CAS  PubMed  Google Scholar 

  • Paterson NE, Semenova S, Gasparini F, Markou A (2003) The mGluR5 antagonist MPEP decreased nicotine self-administration in rats and mice. Psychopharmacology 167:257–264

    CAS  PubMed  Google Scholar 

  • Paterson NE, Balfour DJ, Markou A (2007) Chronic bupropion attenuated the anhedonic component of nicotine withdrawal in rats via inhibition of dopamine reuptake in the nucleus accumbens shell. Eur J Neurosci 25:3099–3108

    PubMed  Google Scholar 

  • Paterson NE, Min W, Hackett A, Lowe D, Hanania T, Caldarone B, Ghavami A (2010) The high-affinity nAChR partial agonists varenicline and sazetidine-A exhibit reinforcing properties in rats. Prog Neuropsychopharmacol Biol Psychiatry 34:1455–1464

    CAS  PubMed  Google Scholar 

  • Pettit HO, Ettenberg A, Bloom FE, Koob GF (1984) Destruction of dopamine in the nucleus accumbens selectively attenuates cocaine but not heroin self-administration in rats. Psychopharmacology 84:167–173

    CAS  PubMed  Google Scholar 

  • Phillips PE, Stuber GD, Heien ML, Wightman RM, Carelli RM (2003) Subsecond dopamine release promotes cocaine seeking. Nature 422:614–618

    CAS  PubMed  Google Scholar 

  • Pidoplichko VI, DeBiasi M, Williams JT, Dani JA (1997) Nicotine activates and desensitizes midbrain dopamine neurons. Nature 390:401–404

    CAS  PubMed  Google Scholar 

  • Pontieri FE, Tanda G, Orzi F, Di Chiara G (1996) Effects of nicotine on the nucleus accumbens and similarity to those of addictive drugs. Nature 382:255–257

    CAS  PubMed  Google Scholar 

  • Rada P, Jensen K, Hoebel BG (2001) Effects of nicotine and mecamylamine-induced withdrawal on extracellular dopamine and acetylcholine in the rat nucleus accumbens. Psychopharmacology 157:105–110

    CAS  PubMed  Google Scholar 

  • Ranaldi R, Roberts DC (1996) Initiation, maintenance and extinction of cocaine self-administration with and without conditioned reward. Psychopharmacology 128:89–96

    CAS  PubMed  Google Scholar 

  • Rauhut AS, Neugebauer N, Dwoskin LP, Bardo MT (2003) Effect of bupropion on nicotine self-administration in rats. Psychopharmacology 169:1–9

    CAS  PubMed  Google Scholar 

  • Reavill C, Walther B, Stolerman IP, Testa B (1990) Behavioural and pharmacokinetic studies on nicotine, cytisine and lobeline. Neuropharmacology 29:619–624

    CAS  PubMed  Google Scholar 

  • Reid MS, Ho LB, Berger SP (1998) Behavioral and neurochemical components of nicotine sensitization following 15-day pretreatment: studies on contextual conditioning. Behav Pharmacol 9:137–148

    CAS  PubMed  Google Scholar 

  • Reperant C, Pons S, Dufour E, Rollema H, Gardier AM, Maskos U (2010) Effect of the alpha4beta2* nicotinic acetylcholine receptor partial agonist varenicline on dopamine release in beta2 knock-out mice with selective re-expression of the beta2 subunit in the ventral tegmental area. Neuropharmacology 58:346–350

    CAS  PubMed  Google Scholar 

  • Roberts DC, Koob GF (1982) Disruption of cocaine self-administration following 6-hydroxydopamine lesions of the ventral tegmental area in rats. Pharmacol Biochem Behav 17:901–904

    CAS  PubMed  Google Scholar 

  • Roberts DC, Corcoran ME, Fibiger HC (1977) On the role of ascending catecholaminergic systems in intravenous self-administration of cocaine. Pharmacol Biochem Behav 6:615–620

    CAS  PubMed  Google Scholar 

  • Rocha BA, Fumagalli F, Gainetdinov RR, Jones SR, Ator R, Giros B, Miller GW, Caron MG (1998) Cocaine self-administration in dopamine-transporter knockout mice. Nat Neurosci 1:132–137

    CAS  PubMed  Google Scholar 

  • Rodd-Henricks ZA, McKinzie DL, Li TK, Murphy JM, McBride WJ (2002) Cocaine is self-administered into the shell but not the core of the nucleus accumbens of Wistar rats. J Pharmacol Exp Ther 303:1216–1226

    CAS  PubMed  Google Scholar 

  • Rodriguez AL, Tarr JC, Zhou Y, Williams R, Gregory KJ, Bridges TM, Daniels JS, Niswender CM, Conn PJ, Lindsley CW, Stauffer SR (2010) Identification of a glycine sulfonamide based non-MPEP site positive allosteric potentiator (PAM) of mGlu5 probe reports from the NIH molecular libraries program, Bethesda (MD)

    Google Scholar 

  • Rollema H, Chambers LK, Coe JW, Glowa J, Hurst RS, Lebel LA, Lu Y, Mansbach RS, Mather RJ, Rovetti CC, Sands SB, Schaeffer E, Schulz DW, Tingley FD 3rd, Williams KE (2007a) Pharmacological profile of the alpha4beta2 nicotinic acetylcholine receptor partial agonist varenicline, an effective smoking cessation aid. Neuropharmacology 52:985–994

    CAS  PubMed  Google Scholar 

  • Rollema H, Coe JW, Chambers LK, Hurst RS, Stahl SM, Williams KE (2007b) Rationale, pharmacology and clinical efficacy of partial agonists of alpha4beta2 nACh receptors for smoking cessation. Trends Pharmacol Sci 28:316–325

    CAS  PubMed  Google Scholar 

  • Rollema H, Shrikhande A, Ward KM, Tingley FD 3rd, Coe JW, O’Neill BT, Tseng E, Wang EQ, Mather RJ, Hurst RS, Williams KE, de Vries M, Cremers T, Bertrand S, Bertrand D (2010) Pre-clinical properties of the alpha4beta2 nicotinic acetylcholine receptor partial agonists varenicline, cytisine and dianicline translate to clinical efficacy for nicotine dependence. Br J Pharmacol 160:334–345

    CAS  PubMed Central  PubMed  Google Scholar 

  • Rose JE (2006) Nicotine and nonnicotine factors in cigarette addiction. Psychopharmacology 184:274–285

    CAS  PubMed  Google Scholar 

  • Rose JE, Behm FM, Westman EC, Johnson M (2000) Dissociating nicotine and nonnicotine componenents of cigarette smoking. Pharmacol Biochem Behav 67:71–78

    Google Scholar 

  • Salamone JD, Correa M (2012) The mysterious motivational functions of mesolimbic dopamine. Neuron 76:470–485

    CAS  PubMed  Google Scholar 

  • Salamone JD, Correa M (2013) Dopamine and food addiction: lexicon badly needed. Biol Psychiatry 73:e15–e24

    CAS  PubMed  Google Scholar 

  • Salamone JD, Correa M, Farrar A, Mingote SM (2007) Effort-related functions of nucleus accumbens dopamine and associated forebrain circuits. Psychopharmacology 191:461–482

    CAS  PubMed  Google Scholar 

  • Salamone JD, Correa M, Nunes EJ, Randall PA, Pardo M (2012) The behavioral pharmacology of effort-related choice behavior: dopamine, adenosine and beyond. J Exp Anal Behav 97:125–146

    PubMed Central  PubMed  Google Scholar 

  • Saura J, Kettler R, Da Prada M, Richards JG (1992) Quantitative enzyme radioautography with 3H-Ro 41-1049 and 3H-Ro 19-6327 in vitro: localization and abundance of MAO-A and MAO-B in rat CNS, peripheral organs, and human brain. J Neurosci 12:1977–1999

    CAS  PubMed  Google Scholar 

  • Scherma M, Panlilio LV, Fadda P, Fattore L, Gamaleddin I, Le Foll B, Justinova Z, Mikics E, Haller J, Medalie J, Stroik J, Barnes C, Yasar S, Tanda G, Piomelli D, Fratta W, Goldberg SR (2008) Inhibition of anandamide hydrolysis by cyclohexyl carbamic acid 3′-carbamoyl-3-yl ester (URB597) reverses abuse-related behavioral and neurochemical effects of nicotine in rats. J Pharmacol Exp Ther 327:482–490

    CAS  PubMed Central  PubMed  Google Scholar 

  • Scherma M, Justinova Z, Zanettini C, Panlilio LV, Mascia P, Fadda P, Fratta W, Makriyannis A, Vadivel SK, Gamaleddin I, Le Foll B, Goldberg SR (2012) The anandamide transport inhibitor AM404 reduces the rewarding effects of nicotine and nicotine-induced dopamine elevations in the nucleus accumbens shell in rats. Br J Pharmacol 165:2539–2548

    CAS  PubMed Central  PubMed  Google Scholar 

  • Schilstrom B, Nomikos GG, Nisell M, Hertel P, Svensson TH (1998) N-methyl-D-aspartate receptor antagonism in the ventral tegmental area diminishes the systemic nicotine-induced dopamine release in the nucleus accumbens. Neuroscience 82:781–789

    CAS  PubMed  Google Scholar 

  • Schilstrom B, Rawal N, Mameli-Engvall M, Nomikos GG, Svensson TH (2003) Dual effects of nicotine on dopamine neurons mediated by different nicotinic receptor subtypes. Int J Neuropsychopharmacol 6:1–11

    PubMed  Google Scholar 

  • Schultz W (2004) Neural coding of basic reward terms of animal learning theory, game theory, microeconomics and behavioural ecology. Curr Opin Neurobiol 14:139–147

    CAS  PubMed  Google Scholar 

  • Schultz W (2007) Multiple dopamine functions at different time courses. Annu Rev Neurosci 30:259–288

    CAS  PubMed  Google Scholar 

  • Schultz W (2010) Dopamine signals for reward value and risk: basic and recent data. Behav Brain Functions 6:24

    Google Scholar 

  • Schultz W (2011) Potential vulnerabilities of neuronal reward, risk, and decision mechanisms to addictive drugs. Neuron 69:603–617

    CAS  PubMed  Google Scholar 

  • Sellings LH, Clarke PB (2003) Segregation of amphetamine reward and locomotor stimulation between nucleus accumbens medial shell and core. J Neurosci 23:6295–6303

    CAS  PubMed  Google Scholar 

  • Sellings LH, McQuade LE, Clarke PB (2006) Evidence for multiple sites within rat ventral striatum mediating cocaine-conditioned place preference and locomotor activation. J Pharmacol Exp Ther 317:1178–1187

    CAS  PubMed  Google Scholar 

  • Sellings LH, Baharnouri G, McQuade LE, Clarke PB (2008) Rewarding and aversive effects of nicotine are segregated within the nucleus accumbens. Eur J Neurosci 28:342–352

    PubMed  Google Scholar 

  • Sesack SR, Grace AA (2010) Cortico-Basal Ganglia reward network: microcircuitry. Neuropsychopharmacology 35:27–47

    PubMed Central  PubMed  Google Scholar 

  • Shoaib M, Stolerman IP (1999) Plasma nicotine and cotinine levels following intravenous nicotine self-administration in rats. Psychopharmacology 143:318–321

    CAS  PubMed  Google Scholar 

  • Shoaib M, Benwell ME, Akbar MT, Stolerman IP, Balfour DJ (1994) Behavioural and neurochemical adaptations to nicotine in rats: influence of NMDA antagonists. Br J Pharmacol 111:1073–1080

    CAS  PubMed Central  PubMed  Google Scholar 

  • Shoaib M, Schindler CW, Goldberg SR (1997) Nicotine self-administration in rats: strain and nicotine pre-exposure effects on acquisition. Psychopharmacology 129:35–43

    CAS  PubMed  Google Scholar 

  • Shoaib M, Sidhpura N, Shafait S (2003) Investigating the actions of bupropion on dependence-related effects of nicotine in rats. Psychopharmacology 165:405–412

    CAS  PubMed  Google Scholar 

  • Singer G, Wallace M (1984) Effects of 6-OHDA lesions in the nucleus accumbens on the acquisition of self injection of heroin under schedule and non schedule conditions in rats. Pharmacol Biochem Behav 20:807–809

    CAS  PubMed  Google Scholar 

  • Singer G, Wallace M, Hall R (1982) Effects of dopaminergic nucleus accumbens lesions on the acquisition of schedule induced self injection of nicotine in the rat. Pharmacol Biochem Behav 17:579–581

    CAS  PubMed  Google Scholar 

  • Spiller K, Xi ZX, Li X, Ashby CR Jr, Callahan PM, Tehim A, Gardner EL (2009) Varenicline attenuates nicotine-enhanced brain-stimulation reward by activation of alpha4beta2 nicotinic receptors in rats. Neuropharmacology 57:60–66

    CAS  PubMed Central  PubMed  Google Scholar 

  • Stead LF, Lancaster T (2007) Interventions to reduce harm from continued tobacco use. Cochrane Database Syst Rev: CD005231

    Google Scholar 

  • Stead LF, Perera R, Bullen C, Mant D, Hartmann-Boyce J, Cahill K, Lancaster T (2012) Nicotine replacement therapy for smoking cessation. Cochrane Database Syst Rev 11:CD000146

    Google Scholar 

  • Stefanik MT, Kupchik YM, Brown RM, Kalivas PW (2013) Optogenetic evidence that pallidal projections, not nigral projections, from the nucleus accumbens core are necessary for reinstating cocaine seeking. J Neurosci 33:13654–13662

    CAS  PubMed Central  PubMed  Google Scholar 

  • Stuber GD, Roitman MF, Phillips PE, Carelli RM, Wightman RM (2005) Rapid dopamine signaling in the nucleus accumbens during contingent and noncontingent cocaine administration. Neuropsychopharmacology 30:853–863

    CAS  PubMed  Google Scholar 

  • Suemaru K, Gomita Y, Furuno K, Araki Y (1993) Chronic nicotine treatment potentiates behavioral responses to dopaminergic drugs in rats. Pharmacol Biochem Behav 46:135–139

    CAS  PubMed  Google Scholar 

  • Sutherland G, Russell MA, Stapleton J, Feyerabend C, Ferno O (1992) Nasal nicotine spray: a rapid nicotine delivery system. Psychopharmacology 108:512–518

    CAS  PubMed  Google Scholar 

  • Taepavarapruk P, Floresco SB, Phillips AG (2000) Hyperlocomotion and increased dopamine efflux in the rat nucleus accumbens evoked by electrical stimulation of the ventral subiculum: role of ionotropic glutamate and dopamine D1 receptors. Psychopharmacology 151:242–251

    CAS  PubMed  Google Scholar 

  • Tessari M, Pilla M, Andreoli M, Hutcheson DM, Heidbreder CA (2004) Antagonism at metabotropic glutamate 5 receptors inhibits nicotine- and cocaine-taking behaviours and prevents nicotine-triggered relapse to nicotine-seeking. Eur J Pharmacol 499:121–133

    CAS  PubMed  Google Scholar 

  • Tronci V, Balfour DJ (2011) The effects of the mGluR5 receptor antagonist 6-methyl-2-(phenylethynyl)-pyridine (MPEP) on the stimulation of dopamine release evoked by nicotine in the rat brain. Behav Brain Res 219:354–357

    CAS  PubMed  Google Scholar 

  • Tronci V, Vronskaya S, Montgomery N, Mura D, Balfour DJ (2010) The effects of the mGluR5 receptor antagonist 6-methyl-2-(phenylethynyl)-pyridine (MPEP) on behavioural responses to nicotine. Psychopharmacology 211:33–42

    CAS  PubMed Central  PubMed  Google Scholar 

  • Van Gucht D, Van den Bergh O, Beckers T, Vansteenwegen D (2010) Smoking behavior in context: where and when do people smoke? J Behav Ther Exp Psychiatry 41:172–177

    PubMed  Google Scholar 

  • Vanderschuren LJ, Kalivas PW (2000) Alterations in dopam mergic and glutamatergic transmission in the induction and expression of behavioural sensitization: a critical review of preclinical studies. Psychopharmacology 151:99–120

    Google Scholar 

  • Vansickel AR, Eissenberg T (2013) Electronic cigarettes: effective nicotine delivery after acute administration. Nicotine Tob Res 15:267–270

    CAS  PubMed Central  PubMed  Google Scholar 

  • Villegier AS, Lotfipour S, McQuown SC, Belluzzi JD, Leslie FM (2007) Tranylcypromine enhancement of nicotine self-administration. Neuropharmacology 52:1415–1425

    CAS  PubMed  Google Scholar 

  • Volkow ND, Wang GJ, Fowler JS, Tomasi D, Telang F (2011) Addiction: beyond dopamine reward circuitry. Proc Natl Acad Sci USA 108:15037–15042

    Google Scholar 

  • Warner C, Shoaib M (2005) How does bupropion work as a smoking cessation aid? Addict Biol 10:219–231

    CAS  PubMed  Google Scholar 

  • Watkins SS, Stinus L, Koob GF, Markou A (2000) Reward and somatic changes during precipitated nicotine withdrawal in rats: centrally and peripherally mediated effects. J Pharmacol Exp Ther 292:1053–1064

    CAS  PubMed  Google Scholar 

  • Wickham R, Solecki W, Rathbun L, McIntosh JM, Addy NA (2013) Ventral tegmental area alpha6beta2 nicotinic acetylcholine receptors modulate phasic dopamine release in the nucleus accumbens core. Psychopharmacology 229:73–82

    CAS  PubMed Central  PubMed  Google Scholar 

  • Willuhn I, Wanat MJ, Clark JJ, Phillips PE (2010) Dopamine signaling in the nucleus accumbens of animals self-administering drugs of abuse. Curr Top Behav Neurosci 3:29–71

    PubMed Central  PubMed  Google Scholar 

  • Wing VC, Shoaib M (2008) Contextual stimuli modulate extinction and reinstatement in rodents self-administering intravenous nicotine. Psychopharmacology 200:357–365

    CAS  PubMed  Google Scholar 

  • Wise RA (1987) The role of reward pathways in the development of drug dependence. Pharmacol Ther 35:227–263

    CAS  PubMed  Google Scholar 

  • Wise RA (1988a) The neurobiology of craving: implications for the understanding and treatment of addiction. J Abnorm Psychol 97:118–132

    CAS  PubMed  Google Scholar 

  • Wise RA (1988b) Psychomotor stimulant properties of addictive drugs. Ann NY Acad Sci 537:228–234

    CAS  PubMed  Google Scholar 

  • Wise RA (1996) Neurobiology of addiction. Curr Opin Neurobiol 6:243–251

    CAS  PubMed  Google Scholar 

  • Wise RA, Bozarth MA (1985) Brain mechanisms of drug reward and euphoria. Psychiatr Med 3:445–460

    CAS  PubMed  Google Scholar 

  • Wise RA, Bozarth MA (1987) A psychomotor stimulant theory of addiction. Psychol Rev 94:469–492

    CAS  PubMed  Google Scholar 

  • Wouda JA, Riga D, De Vries W, Stegeman M, van Mourik Y, Schetters D, Schoffelmeer AN, Pattij T, De Vries TJ (2011) Varenicline attenuates cue-induced relapse to alcohol, but not nicotine seeking, while reducing inhibitory response control. Psychopharmacology 216:267–277

    CAS  PubMed Central  PubMed  Google Scholar 

  • Zahm DS, Brog JS (1992) On the significance of subterritories in the “accumbens” part of the rat ventral striatum. Neuroscience 50:751–767

    CAS  PubMed  Google Scholar 

  • Zhang T, Zhang L, Liang Y, Siapas AG, Zhou FM, Dani JA (2009) Dopamine signaling differences in the nucleus accumbens and dorsal striatum exploited by nicotine. J Neurosci 29:4035–4043

    CAS  PubMed Central  PubMed  Google Scholar 

  • Zhang L, Dong Y, Doyon WM, Dani JA (2012) Withdrawal from chronic nicotine exposure alters dopamine signaling dynamics in the nucleus accumbens. Biol Psychiatry 71:184–191

    CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

The studies reported in this chapter from the author’s laboratory were performed with the aid of grants from the Wellcome Trust and Cancer Research UK.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David J. K. Balfour .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Balfour, D.J.K. (2015). The Role of Mesoaccumbens Dopamine in Nicotine Dependence. In: Balfour, D., Munafò, M. (eds) The Neuropharmacology of Nicotine Dependence. Current Topics in Behavioral Neurosciences, vol 24. Springer, Cham. https://doi.org/10.1007/978-3-319-13482-6_3

Download citation

Publish with us

Policies and ethics