Skip to main content

Basic Mechanisms Underlying Noise-Induced Hearing Loss

  • Chapter
Free Radicals in ENT Pathology

Abstract

The basic concept of noise-induced hearing loss (NIHL) is relatively simple: the development of a hearing dysfunction following exposure to a loud sound. However, there are many complexities in the types of hearing dysfunctions that can follow noise and the mechanisms underlying these changes. There have been several classical ways of differentiating types of NIHL. One such division is based on changes in the thresholds for detection of a sound, a reflexive behavioral response to a sound, an auditory brain stem response (ABR) evoked by sound, or some other sound-evoked physiological response in the central auditory pathways. If the amount of signal needed to generate detection or response becomes greater following a noise, this is considered a threshold shift. The threshold shift following noise can be temporary (a temporary threshold shift or TTS) or permanent (a permanent threshold shift or PTS). A PTS generally involves loss of sensory cells and can be further divided into cell death following apoptosis versus cell death by necrosis. TTS and the two types of PTS are all considered to have different causes and underlying mechanisms.

Another canonical way of classifying NIHL is by the causes, which can be strictly mechanical, a consequence of metabolic/intracellular influences, initiation of cell death pathways, or some combination thereof. Finally, one can divide the NIHL effects into those from predominantly peripheral consequences, from central auditory changes, or from both. This chapter will first focus on the peripheral events occurring in the cochlea. It will consider TTS and how our understanding of TTS has changed based on recent studies showing “permanent” auditory neuropathy occurring along with traditional “temporary” components of TTS (J Neurosci 26(7):2115–2123, 2006; J Neurosci 29(45):14077–14085, 2009). It will then consider the different types of PTS. For both types of threshold shifts, this chapter will consider the structural, cellular, and intracellular elements involved, the mechanical and metabolic/intracellular pathway influences, and how our understanding has progressed. Because the role of oxidative stress and free radicals in these mechanisms is the subject of many other chapters in this volume (Chaps. 2, 10, 13, and 19), specific pathways for formation of free radicals and their influence on cell function and cell death will not be detailed in this chapter. The chapter will assume their significant role in NIHL and consider strategies for protection and treatment given this role. The chapter will conclude with consideration of central auditory effects.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adams JC (2009) Immunocytochemical traits of type IV fibrocytes and their possible relations to cochlear function and pathology. J Assoc Res Otolaryngol 10(3):369–382

    Article  PubMed Central  PubMed  Google Scholar 

  • Ahmad M, Bohne BA, Harding GW (2003) An in vivo tracer study of noise-induced damage to the reticular lamina. Hear Res 175(1–2):82–100

    Article  PubMed  Google Scholar 

  • Altschuler RA, Holt AG, Asako M, Lomax CA, Lomax MI, Juiz J (2004) Molecular mechanisms in deafness-related auditory brain stem plasticity. In: Merzenich M, Syka J (eds) Plasticity of the central auditory system and processing of complex acoustic signals. Kluwer-Plenum, New York

    Google Scholar 

  • Asako M, Holt AG, Griffith RD, Buras ED, Altschuler RA (2005) Deafness-related changes in glycine-immunoreactive staining in the rat cochlear nucleus. J. Neurosci Res 81:102–109

    Article  CAS  Google Scholar 

  • Baizer JS, Manohar S, Paolone NA, Weinstock N, Salvi RJ (2012) Understanding tinnitus: the dorsal cochlear nucleus, organization and plasticity. Brain Res 1485:40–53

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Bielefeld EC, Hangauer D, Henderson D (2011) Protection from impulse noise-induced hearing loss with novel Src-protein tyrosine kinase inhibitors. Neurosci Res 71(4):348–354

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Borg E, Counter SA (1989) The middle-ear muscles. Sci Am 261(2):74–80

    Article  CAS  PubMed  Google Scholar 

  • Brown MR, Kaczmarek LK (2011) Potassium channel modulation and auditory processing. Hear Res 279(1–2):32–42

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Buras ED, Holt AG, Griffith RD, Asako M, Altschuler RA (2006) Changes in glycine immunoreactivity in the rat SOC following deafness. J Comp Neurol 494:179–189

    Article  PubMed Central  PubMed  Google Scholar 

  • Canlon B, Miller J, Flock A, Borg E (1987) Pure tone overstimulation changes the micromechanical properties of the inner hair cell stereocilia. Hear Res 30(1):65–72

    Article  CAS  PubMed  Google Scholar 

  • Canlon B, Borg E, Flock A (1988) Protection against noise trauma by pre-exposure to a low level acoustic stimulus. Hear Res 34(2):197–200

    Article  CAS  PubMed  Google Scholar 

  • Canlon B, Löfstrand P, Borg E (1993) Ultrastructural changes in the presynaptic region of outer hair cells after acoustic stimulation. Neurosci Lett 150(1):103–106

    Article  CAS  PubMed  Google Scholar 

  • Caspary DM, Ling L, Turner JG, Hughes LF (2008) Inhibitory neurotransmission, plasticity and aging in the mammalian central auditory system. J Exp Biol 211(Pt 11):1781–1791

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Dong S, Mulders WH, Rodger J, Robertson D (2009) Changes in neuronal activity and gene expression in guinea-pig auditory brainstem after unilateral partial hearing loss. Neuroscience 159(3):1164–1174

    Article  CAS  PubMed  Google Scholar 

  • Eggermont JJ (2008) Role of auditory cortex in noise- and drug-induced tinnitus. Am J Audiol 17(2):S162–S169

    Article  PubMed  Google Scholar 

  • Engineer ND, Møller AR, Kilgard MP (2013) Directing neural plasticity to understand and treat tinnitus. Hear Res 295:58–66

    Article  PubMed  Google Scholar 

  • Feng J, Bendiske J, Morest DK (2012) Degeneration in the ventral cochlear nucleus after severe noise damage in mice. J Neurosci Res 90(4):831–841

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Fetoni AR, Bielefeld EC, Paludetti G, Nicotera T, Henderson D (2014) A putative role of p53 pathway against impulse noise induced damage as demonstrated by protection with pifithrin-alpha and a Src inhibitor. Neurosci Res 81–82:30–37

    Article  PubMed  Google Scholar 

  • Flock A, Orman S (1983) Micromechanical properties of sensory hairs on receptor cells of the inner ear. Hear Res 11(3):249–260

    Article  CAS  PubMed  Google Scholar 

  • Fritz J, Elhilali M, Shamma S (2005) Active listening: task-dependent plasticity of spectrotemporal receptive fields in primary auditory cortex. Hear Res 206(1–2):159–176

    Article  PubMed  Google Scholar 

  • Furman AC, Kujawa SG, Liberman MC (2013) Noise-induced cochlear neuropathy is selective for fibers with low spontaneous rates. J Neurophysiol 110(3):577–586

    Article  PubMed Central  PubMed  Google Scholar 

  • Grantham MAM (2011) Noise-induced hearing loss and tinnitus: challenges for the military. In: Le Prell CG, Henderson D, Fay RR, Popper AN (eds) Noise-induced hearing loss: scientific advances, springer handbook of auditory research. Springer Science + Business Media, LLC, New York

    Google Scholar 

  • Hackney CM, Furness DN (2013) The composition and role of cross links in mechanoelectrical transduction in vertebrate sensory hair cells. J Cell Sci 126(Pt 8):1721–1731

    Article  CAS  PubMed  Google Scholar 

  • Harding GW, Bohne BA (2004) Temporary DPOAE level shifts, ABR threshold shifts and histopathological damage following below-critical-level noise exposures. Hear Res 196(1–2):94–108

    Article  PubMed  Google Scholar 

  • Harris KC, Bielefeld E, Hu BH, Henderson D (2006) Increased resistance to free radical damage induced by low-level sound conditioning. Hear Res 213(1–2):118–129

    Article  CAS  PubMed  Google Scholar 

  • Henderson D, Hamernik RP (2011) The use of kurtosis measurement in the assessment of potential noise trauma. In: Le Prell CG, Henderson D, Fay RR, Popper AN (eds) Noise-induced hearing loss: scientific advances. Springer, New York, pp 41–56

    Google Scholar 

  • Henderson D, Spongr V, Subramaniam M, Campo P (1994) Anatomical effects of impact noise. Hear Res 76(1–2):101–117

    Article  CAS  PubMed  Google Scholar 

  • Henderson D, Bielefeld EC, Harris KC, Hu BH (2006) The role of oxidative stress in noise-induced hearing loss. Ear Hear 27(1):1–19

    Article  PubMed  Google Scholar 

  • Hickox AE, Liberman MC (2014) Is noise-induced cochlear neuropathy key to the generation of hyperacusis or tinnitus? J Neurophysiol 111(3):552–564

    Article  PubMed Central  PubMed  Google Scholar 

  • Holt AG, Asako M, Duncan RK, Lomax CA, Juiz JM, Altschuler RA (2006) Deafness associated changes in expression of two-pore domain potassium channels in the rat cochlear nucleus. Hear Res 216–217:146–153

    Article  PubMed  Google Scholar 

  • Hu B (2012) Noise-induced structural damage in the cochlea. In: LePrell CG, Henderson D, Fay RR, Popper AN (eds) Noise induced hearing loss, scientific advances. Springer, New York, pp 57–86

    Chapter  Google Scholar 

  • Hu B, Henderson D (1997) Changes in F-actin labeling in the outer hair cell and deiters cell in the chinchilla cochlea following noise exposure. Hear Res 110:209–218

    Article  CAS  PubMed  Google Scholar 

  • Hudspeth AJ (1989) Mechanoelectrical transduction by hair cells of the bullfrog’s sacculus. Prog Brain Res 80:129–135

    Article  CAS  PubMed  Google Scholar 

  • Indzhykulian AA, Stepanyan R, Nelina A, Spinelli KJ, Ahmed ZM, Belyantseva IA, Friedman TB, Barr-Gillespie PG, Frolenkov GI (2013) Molecular remodeling of tip links underlies mechanosensory regeneration in auditory hair cells. PLoS Biol 11(6):e1001583

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Jiang H, Sha SH, Schacht J (2005) NF-kappaB pathway protects cochlear hair cells from aminoglycoside-induced ototoxicity. J Neurosci Res 79(5):644–651

    Article  CAS  PubMed  Google Scholar 

  • Kaltenbach JA (2011) Tinnitus: models and mechanisms. Hear Res 276(1–2):52–60

    Article  PubMed Central  PubMed  Google Scholar 

  • Kemp DT (2002) Otoacoustic emissions, their origin in cochlear function and use. Br Med Bull 63:223–241

    Article  PubMed  Google Scholar 

  • Kim JJ, Gross J, Potashner SJ, Morest DK (2004a) Fine structure of long-term changes in the cochlear nucleus after acoustic overstimulation: chronic degeneration and new growth of synaptic endings. J Neurosci Res 77(6):817–828

    Article  CAS  PubMed  Google Scholar 

  • Kim JJ, Gross J, Potashner SJ, Morest DK (2004b) Fine structure of degeneration in the cochlear nucleus of the chinchilla after acoustic overstimulation. J Neurosci Res 77(6):798–816

    Article  CAS  PubMed  Google Scholar 

  • King AJ, Moore DR (1991) Plasticity of auditory maps in the brain. Trends Neurosci 14(1):31–37

    Article  CAS  PubMed  Google Scholar 

  • Knipper M, Van Dijk P, Nunes I, Rüttiger L, Zimmermann U (2013) Advances in the neurobiology of hearing disorders: recent developments regarding the basis of tinnitus and hyperacusis. Prog Neurobiol 111:17–33

    Article  PubMed  Google Scholar 

  • Konings A, Van Laer L, Michel S, Pawelczyk M, Carlsson PI, Bondeson ML, Rajkowska E, Dudarewicz A, Vandevelde A, Fransen E, Huyghe J, Borg E, Sliwinska-Kowalska M, Van Camp G (2009) Variations in HSP70 genes associated with noise-induced hearing loss in two independent populations. Eur J Hum Genet 17(3):329–335

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kraus KS, Canlon B (2012) Neuronal connectivity and interactions between the auditory and limbic systems. Effects of noise and tinnitus. Hear Res 288(1–2):34–46

    Article  PubMed  Google Scholar 

  • Kujawa SG, Liberman MC (2006) Acceleration of age-related hearing loss by early noise exposure: evidence of a misspent youth. J Neurosci 26(7):2115–2123

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kujawa SG, Liberman MC (2009) Adding insult to injury: cochlear nerve degeneration after “temporary” noise-induced hearing loss. J Neurosci 29(45):14077–14085

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Liberman MC, Liberman LD, Maison SF (2014) Efferent feedback slows cochlear aging. J Neurosci 34(13):4599–4607

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Liu L, Wang H, Shi L, Almuklass A, He T, Aiken S, Bance M, Yin S, Wang J (2012) Silent damage of noise on cochlear afferent innervation in guinea pigs and the impact on temporal processing. PLoS One 7:e49550

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Lurie DI, Rubel EW (1994) Astrocyte proliferation in the chick auditory brainstem following cochlea removal. J Comp Neurol 346(2):276–288

    Article  CAS  PubMed  Google Scholar 

  • May LA, Kramarenko II, Brandon CS, Voelkel-Johnson C, Roy S, Truong K, Francis SP, Monzack EL, Lee FS, Cunningham LL (2013) Inner ear supporting cells protect hair cells by secreting HSP70. J Clin Invest 123(8):3577–3587

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • McIlwaine SD (2009) The army hearing program: expanding audiology’s military reach. The ASHA Leader, Rockville

    Google Scholar 

  • Michler SA, Illing RB (2002) Acoustic trauma induces reemergence of the growth- and plasticity-associated protein GAP-43 in the rat auditory brainstem. J Comp Neurol 451(3):250–266

    Article  CAS  PubMed  Google Scholar 

  • Monzack EL, Cunningham LL (2013) Lead roles for supporting actors: critical functions of inner ear supporting cells. Hear Res 303:20–29

    Article  PubMed Central  PubMed  Google Scholar 

  • Murugasu E, Russell IJ (1996) The effect of efferent stimulation on basilar membrane displacement in the basal turn of the guinea pig cochlea. J Neurosci 16(1):325–332

    CAS  PubMed  Google Scholar 

  • Niu X, Canlon B (2002) Protective mechanisms of sound conditioning. Adv Otorhinolaryngol 59:96–100

    PubMed  Google Scholar 

  • Nordmann AS, Bohne BA, Harding GW (2000) Histopathological differences between temporary and permanent threshold shift. Hear Res 139(1–2):13–30

    Article  CAS  PubMed  Google Scholar 

  • Ohinata Y, Miller JM, Altschuler RA, Schacht J (2000) Intense noise induces formation of vasoactive lipid peroxidation products in the cochlea. Brain Res 878(1–2):163–173

    Article  CAS  PubMed  Google Scholar 

  • Ohinata Y, Miller JM, Schacht J (2003) Protection from noise-induced lipid peroxidation and hair cell loss in the cochlea. Brain Res 966(2):265–273

    Article  CAS  PubMed  Google Scholar 

  • Pickles JO, Comis SD, Osborne MP (1984) Cross-links between stereocilia in the guinea pig organ of Corti, and their possible relation to sensory transduction. Hear Res 15(2):103–112

    Article  CAS  PubMed  Google Scholar 

  • Pickles JO, Osborne MP, Comis SD (1987) Vulnerability of tip links between stereocilia to acoustic trauma in the guinea pig. Hear Res 25(2–3):173–183

    Article  CAS  PubMed  Google Scholar 

  • Puel R et al (1998) Neuroreport 9(9):2109–2114

    Article  CAS  PubMed  Google Scholar 

  • Pujol R, Puel JL (1999) Excitotoxicity, synaptic repair, and functional recovery in the mammalian cochlea: a review of recent findings. Ann N Y Acad Sci 884:249–254

    Article  CAS  PubMed  Google Scholar 

  • Rajan R (2001a) Cochlear outer-hair-cell efferents and complex-sound-induced hearing loss: protective and opposing effects. J Neurophysiol 86(6):3073–3076

    CAS  PubMed  Google Scholar 

  • Rajan R (2001b) Unilateral hearing losses alter loud sound-induced temporary threshold shifts and efferent effects in the normal-hearing ear. J Neurophysiol 85(3):1257–1269

    CAS  PubMed  Google Scholar 

  • Raphael Y, Adler HJ, Neimiec, Altschuler RA (1996) Trauma, repair and regeneration: the role of supporting cells. In: Salvi RJ, Henderson D, Fiorino F, Colletti V (eds) Auditory plasticity and regeneration. Tieman Med Publishers, New York, pp 30–42

    Google Scholar 

  • Richardson BD, Brozoski TJ, Ling LL, Caspary DM (2012) Targeting inhibitory neurotransmission in tinnitus. Brain Res 1485:77–87

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Roberts LE, Eggermont JJ, Caspary DM, Shore SE, Melcher JR, Kaltenbach JA (2010) Ringing ears: the neuroscience of tinnitus. J Neurosci 30(45):14972–14979

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Roy S, Ryals MM, Van den Bruele AB, Fitzgerald TS, Cunningham LL (2013) Sound preconditioning therapy inhibits ototoxic hearing loss in mice. J Clin Invest 123(11):4945–4949

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • 1Russell IJ, Murugasu E (1997) Medial efferent inhibition suppresses basilar membrane responses to near characteristic frequency tones of moderate to high intensities. J Acoust Soc Am 102:1734–1738

    Google Scholar 

  • Ryan AF, Bennett TM, Woolf NK, Axelsson A (1994) Protection from noise-induced hearing loss by prior exposure to a nontraumatic stimulus: role of the middle ear muscles. Hear Res 72(1–2):23–28

    Article  CAS  PubMed  Google Scholar 

  • Sakaguchi H, Tokita J, Müller U, Kachar B (2009) Tip links in hair cells: molecular composition and role in hearing loss. Curr Opin Otolaryngol Head Neck Surg 17(5):388–393

    Article  PubMed Central  PubMed  Google Scholar 

  • Sato K, Shiraishi S, Nakagawa H, Kuriyama H, Altschuler RA (2000) Diversity and plasticity in amino acid receptor subunits in the rat auditory brain stem. Hear Res 147:136–144

    Article  Google Scholar 

  • Saunders JC, Flock A (1986) Recovery of threshold shift in hair-cell stereocilia following exposure to intense stimulation. Hear Res 23(3):233–243

    Article  CAS  PubMed  Google Scholar 

  • Saunders JC, Canlon B, Flock A (1986a) Changes in stereocilia micromechanics following overstimulation in metabolically blocked hair cells. Hear Res 24(3):217–225

    Article  CAS  PubMed  Google Scholar 

  • Saunders JC, Canlon B, Flock A (1986b) Growth of threshold shift in hair-cell stereocilia following overstimulation. Hear Res 23(3):245–255

    Article  CAS  PubMed  Google Scholar 

  • Schreiner CE, Polley DB (2014) Auditory map plasticity: diversity in causes and consequences. Curr Opin Neurobiol 24(1):143–156

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Shi L, Liu L, He T, Guo X, Yu Z, Yin S, Wang J (2013) Ribbon synapse plasticity in the cochleae of Guinea pigs after noise-induced silent damage. PLoS One 8:e81566

    Article  PubMed Central  PubMed  Google Scholar 

  • Shore SE (2011) Plasticity of somatosensory inputs to the cochlear nucleus–implications for tinnitus. Hear Res 281(1–2):38–46

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Singer W, Zuccotti A, Jaumann M, Lee SC, Panford-Walsh R, Xiong H, Zimmermann U, Franz C, Geisler HS, Köpschall I, Rohbock K, Varakina K, Verpoorten S, Reinbothe T, Schimmang T, Rüttiger L, Knipper M (2013) Noise-induced inner hair cell ribbon loss disturbs central arc mobilization: a novel molecular paradigm for understanding tinnitus. Mol Neurobiol 47(1):261–279

    Article  CAS  PubMed  Google Scholar 

  • Singer W, Panford-Walsh R, Knipper M (2014) The function of BDNF in the adult auditory system. Neuropharmacology 76:719–728

    Article  CAS  PubMed  Google Scholar 

  • Sliwinska-Kowalska M, Davis A (2012) Review on genetic risk factors: noise-induced hearing loss. Noise Health 14(61):274–280

    Article  PubMed  Google Scholar 

  • Sliwinska-Kowalska M, Pawelczyk M (2013) Contribution of genetic factors to noise-induced hearing loss: a human studies review. Mutat Res 752(1):61–65

    Article  CAS  PubMed  Google Scholar 

  • Statler KD, Chamberlain SC, Slepecky NB, Smith RL (1990) Development of mature microcystic lesions in the cochlear nuclei of the Mongolian gerbil, Meriones unguiculatus. Hear Res 50(1–2):275–288

    Article  CAS  PubMed  Google Scholar 

  • Tahera Y, Meltser I, Johansson P, Salman H, Canlon B (2007) Sound conditioning protects hearing by activating the hypothalamic-pituitary-adrenal axis. Neurobiol Dis 25(1):189–197

    Article  CAS  PubMed  Google Scholar 

  • Thorne PR, Duncan CE, Gavin JB (1986) The pathogenesis of stereocilia abnormalities in acoustic trauma. Hear Res 21(1):41–49

    Article  CAS  PubMed  Google Scholar 

  • Tilney LG, Saunders JC (1983) Actin filaments, stereocilia, and hair cells of the bird cochlea. I. Length, number, width, and distribution of stereocilia of each hair cell are related to the position of the hair cell on the cochlea. J Cell Biol 96(3):807–821

    Article  CAS  PubMed  Google Scholar 

  • Tilney LG, Saunders JC, Egelman E, DeRosier DJ (1982) Changes in the organization of actin filaments in the stereocilia of noise-damaged lizard cochleae. Hear Res 7(2):181–197

    Article  CAS  PubMed  Google Scholar 

  • Vollrath MA, Kwan KY, Corey DP (2007) The micromachinery of mechanotransduction in hair cells. Annu Rev Neurosci 30:339–365

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Wan G, Corfas G, Stone JS (2013) Inner ear supporting cells: rethinking the silent majority. Semin Cell Dev Biol 24(5):448–459

    Article  PubMed Central  PubMed  Google Scholar 

  • Wang Y, Hirose K, Liberman MC (2002) Dynamics of noise-induced cellular injury and repair in the mouse cochlea. J Assoc Res Otolaryngol 3(3):248–268

    Article  PubMed Central  PubMed  Google Scholar 

  • Wang Y, O’Donohue H, Manis P (2011a) Short-term plasticity and auditory processing in the ventral cochlear nucleus of normal and hearing-impaired animals. Hear Res 279(1–2):131–139

    Article  PubMed Central  PubMed  Google Scholar 

  • Wang H, Brozoski TJ, Caspary DM (2011b) Inhibitory neurotransmission in animal models of tinnitus: maladaptive plasticity. Hear Res 279(1–2):111–117

    Article  PubMed Central  PubMed  Google Scholar 

  • Yamashita D, Jiang HY, Schacht J, Miller JM (2004) Delayed production of free radicals following noise exposure. Brain Res 1019(1–2):201

    Article  CAS  PubMed  Google Scholar 

  • Yamashita D, Jiang HY, Le Prell CG, Schacht J, Miller JM (2005) Post-exposure treatment attenuates noise-induced hearing loss. Neuroscience 134(2):633–642

    Article  CAS  PubMed  Google Scholar 

  • Yamasoba T, Dolan DF (1998) The medial cochlear efferent system does not appear to contribute to the development of acquired resistance to acoustic trauma. Hear Res 120(1–2):143–151

    Article  CAS  PubMed  Google Scholar 

  • Yamasoba T, Nuttall AL, Harris C, Raphael Y, Miller JM (1998) Role of glutathione in protection against noise-induced hearing loss. Brain Res 784(1–2):82–90

    Article  CAS  PubMed  Google Scholar 

  • Yang WP, Henderson D, Hu BH, Nicotera TM (2004) Quantitative analysis of apoptotic and necrotic outer hair cells after exposure to different levels of continuous noise. Hear Res 196(1–2):69–76

    Article  PubMed  Google Scholar 

  • Yankaskas K (2013) Prelude: noise-induced tinnitus and hearing loss in the military. Hear Res 295:3–8

    Article  PubMed  Google Scholar 

  • Yoshida N, Kristiansen A, Liberman MC (1999) Heat stress and protection from permanent acoustic injury in mice. J Neurosci 19(22):10116–10124

    CAS  PubMed  Google Scholar 

  • Zhao Y, Yamoah EN, Gillespie PG (1996) Regeneration of broken tip links and restoration of mechanical transduction in hair cells. Proc Natl Acad Sci U S A 93(26):15469–15474

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Zion Golumbic EM, Poeppel D, Schroeder CE (2012) Temporal context in speech processing and attentional stream selection: a behavioral and neural perspective. Brain Lang 122(3):151–161

    Article  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

We would like to thank the editors, specifically Josef Miller and Colleen LePrell for their contributions to this chapter. This work is supported by NIH grants R01 DC011294 and P30 DC005188 and DOD grant Army W81XWH-11-1-0414.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Richard A. Altschuler Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Altschuler, R.A., Dolan, D. (2015). Basic Mechanisms Underlying Noise-Induced Hearing Loss. In: Miller, J., Le Prell, C., Rybak, L. (eds) Free Radicals in ENT Pathology. Oxidative Stress in Applied Basic Research and Clinical Practice. Humana Press, Cham. https://doi.org/10.1007/978-3-319-13473-4_7

Download citation

Publish with us

Policies and ethics