Skip to main content

Genetics and Age-Related Hearing Loss

  • Chapter
Free Radicals in ENT Pathology

Abstract

Age-related hearing loss—presbycusis—comprises the top communication disorder and neurodegenerative condition of our aged population, and its management is a tremendous burden on our healthcare system. There are currently no biomedical treatments to slow its progression, or reverse its symptoms, which can reduce professional productivity, family communication and relationships, and sometimes lead to depression or other psychosocial deficits. Advances in our knowledge of the biological underpinnings, including the genetics of presbycusis, can pave the way for novel biotherapeutic treatments in the future. We have learned much from utilizing genetically engineered animal models, including inbred and knockout mouse strains, to advance our knowledge of the biological mechanisms, at systems, cellular, genetic and molecular levels, as summarized in the current chapter. Unfortunately, much less is known about human genes underlying presbycusis, with only one gene strongly linked to age-related hearing loss so far.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

ABR:

Auditory brainstem response

ARHL:

Age-related hearing loss, presbycusis

AVCN:

Anteroventral cochlear nucleus

DCN:

Dorsal cochlear nucleus

PCR:

Polymerase chain reaction quantitative measure of gene expression

PTS:

Permanent threshold shift, permanent hearing loss

PVCN:

Posteroventral cochlear nucleus

ROS:

Reactive oxygen species, free radicals

SGN:

Spiral ganglion neuron, auditory nerve fiber

SNP:

Single nucleotide polymorphism

References

  • Astuto LM, Bork JM, Weston MD et al (2002) CDH23 mutation and phenotype heterogeneity: a profile of 107 diverse families with Usher syndrome and nonsyndromic deafness. Am J Hum Genet 71:262–275

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Bose M, Roychowdhury S, Muñoz P, Nichols J, Jakkamsetti V, Porter B, Salgado H, Kilgard MP, Aboitiz F, Dagnino-Subiabre A, Atzori M (2010) Effect of the environment on the dendritic morphology of the rat auditory cortex. Synapse 64:97–110

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Caspary DM, Ling L, Turner JG, Hughes LF (2008) Inhibitory neurotransmission, plasticity and aging in the mammalian central auditory system. J Exp Biol 211(11):1781–1791

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Christensen K, Frederiksen H, Hoffman HJ (2001) Genetic and environmental influences on self-reported reduced hearing in the old and oldest old. J Am Geriatr Soc 49:1512–1517

    Article  CAS  PubMed  Google Scholar 

  • Christensen N, D’Souza M, Zhu X, Frisina RD (2009) Age-related hearing loss: aquaporin 4 gene expression changes in the mouse cochlea and auditory midbrain. Brain Res 1253:27–34

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • D’Souza M, Zhu X, Frisina RD (2008) Novel approach for selecting genes from RMA normalized microarray data using functional hearing tests in aging mice. J Neurosci Methods 171:279–287

    Article  PubMed Central  PubMed  Google Scholar 

  • Engineer ND, Percaccio CR, Pandya PK, Moucha R, Rathbun DL, Kilgard MP (2004) Environmental enrichment improves response strength, threshold, selectivity, and latency of auditory cortex neurons. J Neurophysiol 92:73–82

    Article  PubMed  Google Scholar 

  • Erway LC, Willott JF, Archer JR, Harrison DE (1993) Genetics of age-related hearing loss in mice. I. Inbred and F1 hybrid strains. Hear Res 65:125–132

    Article  CAS  PubMed  Google Scholar 

  • Friedman R, Van Laer L, Huentelman M, Sheth S, Van Eyken E, Corneveaux J, Tembe W, Halperin R, Thorburn A, Thys S, Bonneux S, Fransen E, Huyghe J, Pyykkö I, Cremers C, Kremer H, Dhooge I, Stephens D, Orzan E, Pfister M, Bille M, Parving A, Sorri M, Van de Heyning P, Makmura L, Ohmen J, Linthicum FJ, Fayad J, Pearson J, Craig D, Stephan D, Van Camp G (2009) GRM7 variants confer susceptibility to age-related hearing impairment. Hum Mol Genet 18:785–796

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Frisina DR, Frisina RD (1997) Speech recognition in noise and presbycusis: relations to possible neural sites. Hear Res 106:95–104

    Article  CAS  PubMed  Google Scholar 

  • Frisina DR, Frisina RD, Snell KB, Burkard R, Walton JP, Ison JR, Ison JR (2001) Auditory temporal processing during aging. In: Hof PR, Mobbs CV (eds) Functional neurobiology of aging, vol 39. Academic, San Diego, pp 565–579

    Chapter  Google Scholar 

  • Frisina RD, Newman SR, Zhu X (2007) Auditory efferent activation in CBA mice exceeds that of C57s for varying levels of noise. J Acoust Soc Am 121:EL29–EL34

    Article  PubMed  Google Scholar 

  • Gates GA, Couropmitree NN, Myers RH (1999) Genetic associations in age-related hearing thresholds. Arch Otolaryngol Head Neck Surg 125:654–659

    Article  CAS  PubMed  Google Scholar 

  • Henry KR (1982) Age-related auditory loss and genetics: an electrocochleographic comparison of six inbred strains of mice. J Gerontol 37:275–282

    Article  CAS  PubMed  Google Scholar 

  • Huyghe JR, Van Laer L, Hendrick J-J, Fransen E, Demeester K, Topsakal V, Kunst S, Manninen M, Jensen M, Bonaconsa A, Mazzoli M, Baur M, Hannula S, Mäki-Torkko E, Espeso A, Van Eyken E, Flaquer A, Becker C, Stephen D, Sorri M, Orzan E, Bille M, Parving A, Pyykko I, Cremers CWRJ, Kremer H, Van de Heyning PH, Wienker TF, Nürnberg P, Pfister M, Van Camp G (2008) Genome-wide SNP-based linkage scan identifies a locus on 8q24 for an age-related hearing impairment trait. Am J Hum Genet 83:401–407

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Idrizbegovic E, Canlon B, Bross LS, Willott JF, Bogdanovic N (2001) The total number of neurons and calcium binding protein positive neurons during aging in the cochlear nucleus of CBA/CaJ mice: a quantitative study. Hear Res 158:102–115

    Article  CAS  PubMed  Google Scholar 

  • Idrizbegovic E, Bogdanovic N, Viberg A, Canlon B (2003) Auditory peripheral influences on calcium binding protein immunoreactivity in the cochlear nucleus during aging in the C57BL/6J mouse. Hear Res 179(1–2):33–42

    Article  CAS  PubMed  Google Scholar 

  • Idrizbegovic E, Salman H, Niu X, Canlon B (2006) Presbyacusis and calcium-binding protein immunoreactivity in the cochlear nucleus of BALB/c mice. Hear Res 216–217:198–206

    Article  PubMed  Google Scholar 

  • Idrizbegovica E, Bogdanovicb N, Willott JF, Canlon B (2004) Age-related increases in calcium-binding protein immunoreactivity in the cochlear nucleus of hearing impaired C57BL/6J mice. Neurobiol Aging 25:1085–1093

    Article  Google Scholar 

  • Jimenez AM, Stagner BB, Martin GK, Lonsbury-Martin BL (1999) Age-related loss of distortion product otoacoustic emissions in four mouse strains. Hear Res 138:91–105

    Article  CAS  PubMed  Google Scholar 

  • Johnson KR, Erway LC, Cook SA, Willott JF, Zheng QY (1997) A major gene affecting age-related hearing loss in C57BL/6J mice. Hear Res 114:83–92

    Article  CAS  PubMed  Google Scholar 

  • Johnson KR, Zheng QY, Erway LC (2000) A major gene affecting age-related hearing loss is common to at least ten inbred strains of mice. Genomics 70:171–180

    Article  CAS  PubMed  Google Scholar 

  • Johnson KR, Zheng QY, Noben-Trauth K (2006) Strain background effects and genetic modifiers of hearing in mice. Brain Res 1091:79–88

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Karlsson KK, Harris JR, Svartengren M (1997) Description and primary results from an audiometric study of male twins. Ear Hear 18:114–120

    Article  CAS  PubMed  Google Scholar 

  • Kazee AM, Han LY, Spongr VP, Walton JP, Salvi RJ, Flood DG (1995) Synaptic loss in the central nucleus of the inferior colliculus correlates with sensorineural hearing loss in the C57BL/6 mouse model of presbycusis. Hear Res 89(1–2):109–120

    Article  CAS  PubMed  Google Scholar 

  • Keithley EM, Canto C, Zheng QY, Fischel-Ghodsian N, Johnson KR (2004) Age-related hearing loss and the ahl locus in mice. Hear Res 188:21–28

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kujawa SG, Liberman MC (2009) Adding insult to injury: cochlear nerve degeneration after “temporary” noise-induced hearing loss. J Neurosci 29(45):14077–14085

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Ling LL, Hughes LF, Caspary DM (2005) Age-related loss of the GABA synthetic enzyme glutamic acid decarboxylase in rat primary auditory cortex. Neuroscience 132(4):1103–1113

    Article  CAS  PubMed  Google Scholar 

  • Mcfadden SL, Ding D, Burkard RF, Jiang H, Reaume AG, Flood DG, Salvi RJ (1999a) Cu/Zn SOD deficiency potentiates hearing loss and cochlear pathology in aged 129, CD-1 mice. J Comp Neurol 413:101–112

    Article  CAS  PubMed  Google Scholar 

  • McFadden SL, Ding D, Reaume AG, Flood DG, Salvi RJ (1999b) Age-related cochlear hair cell loss is enhanced in mice lacking copper/zinc superoxide dismutase. Neurobiol Aging 20:1–8

    Article  CAS  PubMed  Google Scholar 

  • Newman DL, Fisher LM, Ohmen J, Parody R, Fong C-T, Frisina ST, Mapes F, Eddins DA, Frisina DR, Frisina RD, Friedman RA (2012) GRM7 association with age-related hearing loss and its extension to additional features of presbycusis. Hear Res 294:125–132

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Noben-Trauth K, Zheng QY, Johnson KR (2003) Association of cadherin 23 with polygenic inheritance and genetic modification of sensorineural hearing loss. Nat Genet 35:21–23

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • O’Neill WE, Zettel ML, Whittemore KR, Frisina RD (1997) Calbindin D-28k immunoreactivity in the medial nucleus of the trapezoid body declines with age in C57B1/6J, but not CBA/CaJ mice. Hear Res 112:158–166

    Article  PubMed  Google Scholar 

  • Ohlemiller KK (2006) Contributions of mouse models to understanding of age- and noise-related hearing loss. Brain Res 1091:89–102

    Article  CAS  PubMed  Google Scholar 

  • Ohlemiller KK, Wright JS, Heidbreder AF (2000) Vulnerability to noise-induced hearing loss in “middle-aged” and young adult mice: a dose-response approach in CBA, C57Bl, and BALB inbred strains. Hear Res 149:239–247

    Article  CAS  PubMed  Google Scholar 

  • Ouda L, Druga R, Syka J (2008) Changes in parvalbumin immunoreactivity with aging in the central auditory system of the rat. Exp Gerontol 43:782–789

    Article  CAS  PubMed  Google Scholar 

  • Rauschecker JP, Leaver AM, Mühlau M (2010) Tuning out the noise: limbic-auditory interactions in tinnitus. Neuron 66(6):819–826

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Schultz JM, Yang Y, Caride AJ, Filoteo AG, Penheiter AR, Lagziel A, Morell RJ, Mohiddin SA, Fananapazir L, Madeo AC, Penniston JT, Griffith AJ (2005) Modification of human hearing loss by plasma-membrane calcium pump PMCA2. N Engl J Med 352:1557–1564

    Article  CAS  PubMed  Google Scholar 

  • Sotomayor M, Weihofen WA, Gaudet R, Corey DP (2010) Structural determinants of cadherin-23 function in hearing and deafness. Neuron 66(1):85–100

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Spongr VP, Flood DG, Frisina RD, Salvi RJ (1997) Quantitative measures of hair cell loss in CBA and C57BL/6 mice throughout their life spans. J Acoust Soc Am 101:3546–3553

    Article  CAS  PubMed  Google Scholar 

  • Syka J, Ouda L, Nachtigal P, Solichova D, Semecka V (2007) Atorvastatin slows down the deterioration of inner ear function with age in mice. Neurosci Lett 411:112–116

    Article  CAS  PubMed  Google Scholar 

  • Tadros SF, D’Souza M, Zettel ML, Zhu X, Lynch-Erhardt M, Frisina RD (2007a) Serotonin 2B receptor: upregulated with age and hearing loss in mouse auditory system. Neurobiol Aging 28:1112–1123

    Article  CAS  PubMed  Google Scholar 

  • Tadros SF, D’Souza M, Zettel ML, Zhu X, Waxmonsky NC, Frisina RD (2007b) Glutamate-related gene expression in CBA mouse inferior colliculus changes with age and hearing loss. Brain Res 1127:1–9

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Tadros SF, D’Souza M, Zhu X, Frisina RD (2008) Apoptosis-related genes change their expression with age and hearing loss in the mouse cochlea. Apoptosis 13:1303–1321

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Tadros SF, D’Souza M, Zhu X, Frisina RD (2014) Age-related gene expression changes for antioxidants in the CBA mouse cochlea. PLoS One 9:e90279

    Article  PubMed Central  PubMed  Google Scholar 

  • Tra Y, Frisina RD, D’Souza M (2011) A novel high-throughput analysis approach: immune response-related genes are up-regulated in age-related hearing loss. Open Access Bioinform 3:1–16

    Google Scholar 

  • Turner JG, Parrish JL, Zuiderveld L, Darr S, Hughes LF, Caspary DM, Idrezbegovic E, Canlon B (2013) Acoustic experience alters the aged auditory system. Ear Hear 34(2):151–159

    Article  PubMed Central  PubMed  Google Scholar 

  • Van Eyken E, Van Camp G, Van Laer L (2007) The complexity of age-related hearing impairment: contributing environmental and genetic factors. Audiol Neurootol 12:345–358

    Article  PubMed  Google Scholar 

  • Viljanen A, Era P, Kaprio J, Pyykko I, Koskenvuo M, Rantanen T (2007) Genetic and environmental influences on hearing in older women. J Gerontol A Biol Sci Med Sci 62:447–452

    Article  PubMed  Google Scholar 

  • Wang H, Turner JG, Ling L, Parrish JL, Hughes LF, Caspary DM (2009) Age-related changes in glycine receptor subunit composition and binding in dorsal cochlear nucleus. Neuroscience 160(1):227–239

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Willott JF (1986) Effects of aging, hearing loss, and anatomical location on thresholds of inferior colliculus neurons in C57BL/6 and CBA mice. J Neurophysiol 56:391–408

    CAS  PubMed  Google Scholar 

  • Willott JF (1991) Aging and the auditory system: anatomy, physiology, and psychophysics. Singular Publishing Group, San Diego

    Google Scholar 

  • Willott JF (2009) Effects of sex, gonadal hormones, and augmented acoustic environments on sensorineural hearing loss and the central auditory system: insights from research on C57BL/6J mice. Hear Res 252:89–99

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Willott JF, Bross LS (2004) Effects of prolonged exposure to an augmented acoustic environment on the auditory system of middle-aged C57BL/6J mice: cochlear and central histology and sex differences. J Comp Neurol 472:358–370

    Article  PubMed  Google Scholar 

  • Willott JF, Turner JG (1999) Prolonged exposure to an augmented acoustic environment ameliorates age-related auditory changes in C57BL/6J and DBA/2J mice. Hear Res 135:78–88

    Article  CAS  PubMed  Google Scholar 

  • Willott JF, Turner JG (2000) Neural plasticity in the mouse inferior colliculus: relationship to hearing loss, augmented acoustic stimulation, and prepulse inhibition. Hear Res 147:275–281

    Article  CAS  PubMed  Google Scholar 

  • Willott JF, Pankow D, Hunter KP, Kordyban M (1985) Projections from the anterior ventral cochlear nucleus to the central nucleus of the inferior colliculus in young and aging C57Bl/6 mice. J Comp Neurol 237:545–551

    Article  CAS  PubMed  Google Scholar 

  • Willott JF, Jackson LM, Hunter KP (1987) Morphometric study of the anteroventral cochlear nucleus of two mouse models of presbycusis. J Comp Neurol 260(3):472–480

    Article  CAS  PubMed  Google Scholar 

  • Willott JF, Parham K, Hunter KP (1988) Response properties of inferior colliculus neurons in middle-aged C57Bl/6J mice with presbycusis. Hear Res 37:15–28

    Article  CAS  PubMed  Google Scholar 

  • Willott JF, Turner JG, Carlson S, Ding D, Seegers Bross L, Falls WA (1998) The BALB/c mouse as an animal model for progressive sensorineural hearing loss. Hear Res 115:162–174

    Article  CAS  PubMed  Google Scholar 

  • Willott JF, Turner JG, Sundin VS (2000) Effects of exposure to an augmented acoustic environment on auditory function in mice: roles of hearing loss and age during treatment. Hear Res 142:79–88

    Article  CAS  PubMed  Google Scholar 

  • Willott JF, Bross LS, McFadden SL (2005) Ameliorative effects of exposing DBA/2J mice to an augmented acoustic environment on histological changes in the cochlea and anteroventral cochlear nucleus. J Assoc Res Otolaryngol 28:1–10

    Google Scholar 

  • Willott JF, VandenBosche J, Shimizu T (2010) Effects of a high-frequency augmented acoustic environment on parvalbumin immunolabeling in the anteroventral cochlear nucleus of DBA/2J and C57BL/6J mice. Hear Res 261:36–41

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Wu W-J, Sha S-H, McLaren JD, Kawamoto K, Raphael Y, Schacht J (2001) Aminoglycoside ototoxicity in adult CBA, C57BL and BALB mice and the Sprague Dawley rat. Hear Res 158:165–178

    Article  CAS  PubMed  Google Scholar 

  • Xiao Y, Frisina RD, Gordon A, Klebanov L, Yakovlev A (2004) Multivariate search for differentially expressed gene combinations. BMC Bioinform 5:164–184

    Article  Google Scholar 

  • Zettel ML, Frisina RD, Haider S, O’Neill WE (1997) Age-related changes in the immunoreactivity of calbindin D28K and calretinin in the inferior colliculus of the CBA/J and C57/6J mouse. J Comp Neurol 386:92–110

    Article  CAS  PubMed  Google Scholar 

  • Zettel ML, O’Neill WE, Trang TT, Frisina RD (2001) Early bilateral deafening prevents calretinin up-regulation in the dorsal cortex of the inferior colliculus of aged CBA/CaJ mice. Hear Res 158:131–138

    Article  CAS  PubMed  Google Scholar 

  • Zheng QY, Ding D, Yu H, Salvi RJ, Johnson KR (2009) A locus on distal chromosome 10 (ahl4) affecting age-related hearing loss in A/J mice. Neurobiol Aging 30:1693–1705

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by NIH Grant P01 AG009524 from the National Institute on Aging. The authors thank Drs. Joseph Walton, Xiaoxia Zhu, Bo Ding, Mary D’Souza, Sherif Tadros, and Susan Frisina R.N. for collaborative contributions leading up to the present report, and Shannon Salvog for project support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert D. Frisina .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Frisina, R.D., Frisina, D.R. (2015). Genetics and Age-Related Hearing Loss. In: Miller, J., Le Prell, C., Rybak, L. (eds) Free Radicals in ENT Pathology. Oxidative Stress in Applied Basic Research and Clinical Practice. Humana Press, Cham. https://doi.org/10.1007/978-3-319-13473-4_14

Download citation

Publish with us

Policies and ethics