Skip to main content

Satellite Super Resolution Image Reconstruction Based on Parallel Support Vector Regression

  • Conference paper
Advanced Machine Learning Technologies and Applications (AMLTA 2014)

Abstract

Super Resolution (SR) refers to the reconstruction of a high resolution image from one or more low resolution images for the same scene. The reconstruction process is considered an inverse problem to the observation model. In this paper the SR problem is formulated by using Support Vector Regression (SVR). SVR is a very expensive computationally algorithm, thus it could be accelerated by using the computational power of a Graphics Processing Unit (GPU). The proposed parallel SVR has been implemented using NVidia’s compute device unified architecture (CUDA). An experiment has been done for a real satellite image. The experimental result demonstrates the speedup of the presented GPU implementation and compared with the serial CPU implementation and state-of-the-art techniques. The speedup of the presented SVR GPU-based implementation is up to approximately 50 times faster than the corresponding optimized CPU.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Yang, J., Huang, T.: Image super-resolution: Historical overview and future challenges. Super-Resolution Imaging, pp. 1–24. CRC Press (2010)

    Google Scholar 

  2. Kang, L.-W., et al.: Self-learning-based single image super-resolution of a highly compressed image. In: 5th International Workshop on Multimedia Signal Processing (MMSP) (2013)

    Google Scholar 

  3. Candocia, F.M., Principe, J.C.: Super resolution of images with learned multiple reconstruction kernels. In: Guan, L., Kung, S.Y., Larsen, J. (eds.) Multimedia Image and Video Processing, pp. 219–243. CRC Press, New York (2000)

    Google Scholar 

  4. van Ouwerkerk, J.D.: Image super-resolution survey. Image and Vision Computing 24, 1039–1052 (2000)

    Article  Google Scholar 

  5. Miravet, C., Rodriguez, F.B.: A two-step neural-network based algorithm for fast image super-resolution. Image and Vision Computing 25, 1449–1473 (2007)

    Article  Google Scholar 

  6. Mountrakis, G., Im, J., Ogole, C.: Support vector machines in remote sensing: A review. ISPRS Journal of Photogrammetry and Remote Sensing 66, 247–259 (2011)

    Article  Google Scholar 

  7. An, L., Bhanu, B.: Improved Image Super-Resolution by Support Vector Regression. In: International Joint Conference on Neural Networks, San Jose, California, USA, July 31-August 5 (2011)

    Google Scholar 

  8. Ho, T., Zeng, B.: Super-resolution images by support vector regression on edge pixels. In: International Symposium on Intelligent Signal Processing and Communication Systems, November 28-December 1, pp. 674–677 (2007)

    Google Scholar 

  9. Smolaandand, A.J., Schölkopf, B.: A tutorial on support vector regression. Statistics and Computing 14, 199–222 (2004)

    Article  MathSciNet  Google Scholar 

  10. Li, D., Simske, S.: Example Based Single-frame Image Super-resolution by Support Vector Regression. Journal of Pattern Recognition Research 1, 104–118 (2010)

    Article  Google Scholar 

  11. Ni, K.S., Nguyen, T.Q.: Image Super resolution Using Support Vector Regression. IEEE Transactions on Image Processing 16(6) (June 2007)

    Google Scholar 

  12. Karl, S.N., Kumar, S., Vasconcelos, N., Nguyen, T.Q.: Single image super resolution based on support vector regression. In: ICASSP (2006)

    Google Scholar 

  13. Drucker, H., Burges, J.C., Kaufman, L., Smola, A., Vapnik, V.: Support Vector Regression Machines. In: Advances in Neural Information Processing Systems, NIPS 1996, vol. 9, pp. 155–161. MIT Press (1997)

    Google Scholar 

  14. Chang, C.-C., Lin, C.-J.: LIBSVM: a library for support vector machines (2001), http://www.csie.ntu.edu.tw/~cjlin/

  15. Fan, R.E., Chen, P.H., Lin, C.J.: Working set selection using second order information for training SVM. Journal of Machine Learning Research 6, 1889–1918 (2005)

    MATH  MathSciNet  Google Scholar 

  16. Hua, T.L., Liu, L.X., Kai, S.Z., Yang, W.Y.: GPU Acceleration of Interior Point Methods in Large Scale SVM Training.12th IEEE International Conference on Security and Privacy in Computing and Communications (TrustCom), pp. 863–870 (2013)

    Google Scholar 

  17. Do, T.N., Nguyen, V.H., Poulet, F.: A Fast Parallel SVM Algorithm for Massive Classification Tasks. Sciences Communications 14, 419–428 (2008)

    Google Scholar 

  18. Wang, Z., Bovik, A.C., Sheikh, H.R., Simoncelli, E.P.: Image quality assessment: From error visibility to structural similarity. IEEE Transactions on Image Processing 13(4), 600–612 (2004)

    Article  Google Scholar 

  19. Achard, F., Malingreau, J.P., Phulpin, T., Saint, G., Saugier, B., Segun, B., Madjar, D.V.: The Vegetation Instrument on Board SPOT-4 - A Mission for Global Monitoring of the Continental Biosphere. LERTS brochure, Toulouse (1990)

    Google Scholar 

  20. Zhao, H., Yu, J.: A Modified SMO Algorithm for SVM Regression and its Application in Quality Prediction of HP-LDPE. In: Wang, L., Chen, K., S. Ong, Y. (eds.) ICNC 2005. LNCS, vol. 3610, pp. 630–639. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  21. Hu, X., Peng, S., Hwang, W.L.: Learning adaptive interpolation kernels for fast single-image super resolution. Signal Image and Video Processing, 1077–1086 (2014)

    Google Scholar 

  22. Purkait, P., Pal, N.R., Chanda, B.: A Fuzzy-Rule-Based Approach for Single Frame Super Resolution. IEEE Transactions on Image Processing 23(5), 2277–2290 (2014)

    Article  MathSciNet  Google Scholar 

  23. Chen, J., Yanez, J.N., Achim, A.: Bayesian Video Super-resolution with Heavy Tailed Prior Models. IEEE Transactions on Circuits and Systems for Video Technology 99, 1–1 (2014)

    Google Scholar 

  24. CULA (GPU-Accelerated LAPACK), http://www.culatools.com/

  25. Hassanien, A.E., Suraj, Z., Slezak, D., Lingras, P.: Rough computing: Theories, technologies and applications. IGI Publishing Hershey, PA (2008)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Moustafa, M., Ebied, H.M., Helmy, A., Nazamy, T.M., Tolba, M.F. (2014). Satellite Super Resolution Image Reconstruction Based on Parallel Support Vector Regression. In: Hassanien, A.E., Tolba, M.F., Taher Azar, A. (eds) Advanced Machine Learning Technologies and Applications. AMLTA 2014. Communications in Computer and Information Science, vol 488. Springer, Cham. https://doi.org/10.1007/978-3-319-13461-1_22

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-13461-1_22

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-13460-4

  • Online ISBN: 978-3-319-13461-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics