Skip to main content

Part of the book series: Proceedings in Adaptation, Learning and Optimization ((PALO,volume 1))

Abstract

Associative memory is defined as the ability to map input patterns to output patterns. Understanding how human brain performs association between unrelated patterns and stores this knowledge is one of the most important goals in computational intelligence. Although this problem has been widely studied using conventional neural networks, increasing biological findings suggest that spiking neural network can be an alternative. The proposed model encodes different memories using different subsets of encoding neurons with temporal codes. A spike-timing based learning algorithm and spike-timing-dependent plasticity (STDP) are used to form associative memory. Simulation results show that hetero-associative memory and auto-associative memory are achievable by the synaptic modification of connections between input layer and hidden layers, and recurrent connections of hidden layers, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Durstewitz, D., Seamans, J.K., Sejnowski, T.J.: Neurocomputational models of working memory. Nature Neuroscience 3, 1184–1191 (2000)

    Article  Google Scholar 

  2. Mongillo, G., Barak, O., Tsodyks, M.: Synaptic theory of working memory. Science 319(5869), 1543–1546 (2008)

    Article  Google Scholar 

  3. Cutsuridis, V., Cobb, S., Graham, B.P.: Encoding and retrieval in a model of the hippocampal CA1 microcircuit. Hippocampus 20(3), 423–446 (2010)

    Google Scholar 

  4. Jensen, O., Idiart, M.A., Lisman, J.E.: Physiologically realistic formation of autoassociative memory in networks with theta/gamma oscillations: Role of fast NMDA channels. Learn & Memory 3, 243–256 (1996)

    Article  Google Scholar 

  5. Jensen, O.: Information transfer between rhythmically coupled networks: reading the hippocampal phase code. Neural Computation 13, 2743–2761 (2001)

    Article  MATH  Google Scholar 

  6. Sommer, F.T., Wennekers, T.: Associative memory in networks of spiking neurons. Neural Networks 14(6-7), 825–834 (2001)

    Article  Google Scholar 

  7. Eichenbaum, H.: A cortical-hippocampal system for declarative memory. Nature Reviews Neuroscience 1, 41–50 (2000)

    Article  Google Scholar 

  8. Frankland, P.W., Bontempi, B.: The organization of recent and remote memories. Nature Reviews Neuroscience 6, 119–130 (2005)

    Article  Google Scholar 

  9. Wiltgen, B.J., Brown, R.A., Talton, L.E., Silva, A.J.: New circuits for old memories: the role of the neocortex in consolidation. Neuron 44, 101–108 (2004)

    Article  Google Scholar 

  10. Lin, L., Osan, R., Shoham, S., Jin, W., Zuo, W., Tsien, J.Z.: Identification of network-level coding units for real-time representation of episodic experiences in the hippocampus. PNAS 102(17), 6125–6130 (2005)

    Article  Google Scholar 

  11. Shadlen, M.N., Newsome, W.T.: Noise, neural codes and cortical organization. Current Opinion in Neurobiology 4, 569–579 (1994)

    Article  Google Scholar 

  12. Litvak, V., Sompolinsky, H., Segev, I., Abeles, M.: On the transmission of rate code in long feed-forward networks with excitatory-inhibitory balance. Journal of Neuroscience 23, 3006–3015 (2003)

    Google Scholar 

  13. Perrett, D.I., Rolls, E.T., Caan, W.: Visual neurones responsive to faces in the monkey temporal cortex. Experimental Brain Research 47(3), 329–342 (1982)

    Article  Google Scholar 

  14. Thorpe, S.J., Imbert, M.: Biological constraints on connectionist modelling. In: Connectionism in Perspective, pp.63–92. Elsevier (1989)

    Google Scholar 

  15. Carr, C.E.: Processing of temporal information in the brain. Annual Review of Neuroscience 16, 223–243 (1993)

    Article  Google Scholar 

  16. Gütig, R., Sompolinsky, H.: The tempotron: A neuron that learns spike timing-based decisions. Nature Neuroscience 9(3), 420–428 (2006)

    Article  Google Scholar 

  17. Bi, G.Q., Poo, M.M.: Synaptic modifications in cultured hippocampal neurons: dependence on spike timing, synaptic strength, & postsynaptic cell type. Journal of Neuroscience 18(24), 10464–10472 (1998)

    Google Scholar 

  18. Sjöström, P.G., Nelson, S.B.: Spike timing, calcium signals and synaptic plasticity. Current Opinion in Neurobiology 12(3), 305–314 (2002)

    Article  Google Scholar 

  19. Bear, M.F., Malenka, R.C.: Synaptic plasticity: LTP and LTD. Current Opinion in Neurobiology 4(3), 389–399 (1994)

    Article  Google Scholar 

  20. Malenka, R.C., Bear, M.F.: LTP and LTD: An embarrassment of riches. Neuron 44(1), 5–21 (2004)

    Article  Google Scholar 

  21. Schreiber, S., Fellous, J., Whitmer, D., Tiesinga, P., Sejnowski, T.: A new correlation-based measure of spike timing reliability. Neurocomputing 52-54, 925–931 (2003)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jun Hu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Hu, J., Tang, H., Tan, K.C., Gee, S.B. (2015). A Spiking Neural Network Model for Associative Memory Using Temporal Codes. In: Handa, H., Ishibuchi, H., Ong, YS., Tan, K. (eds) Proceedings of the 18th Asia Pacific Symposium on Intelligent and Evolutionary Systems, Volume 1. Proceedings in Adaptation, Learning and Optimization, vol 1. Springer, Cham. https://doi.org/10.1007/978-3-319-13359-1_43

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-13359-1_43

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-13358-4

  • Online ISBN: 978-3-319-13359-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics