Skip to main content

Self-Similar Solutions to the Nonstationary Navier-Stokes Equations

  • Reference work entry
  • First Online:
Handbook of Mathematical Analysis in Mechanics of Viscous Fluids

Abstract

The Navier-Stokes equations have a natural scaling invariance which has played an essential role in their study. Valuable insights can be obtained from special solutions which are scale invariant with respect to the natural scaling. These solutions are often called self-similar solutions. In this chapter, important results for both forward self-similar and backward self-similar solutions are reviewed, and open problems will be mentioned.

The research of H.J is supported in part by grant DMS-1600779, and DMS-1128155 through IAS.

The research of VS was supported in part by grants DMS 1362467 and DMS 1159376 from the National Science Foundation. The research of TT was supported in part by the Natural Sciences and Engineering Research Council of Canada grant 261356-13.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 1,799.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 2,499.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. C.J. Amick, Existence of solutions to the nonhomogeneous steady Navier–Stokes equations. Indiana Univ. Math. J. 33, 817–830 (1984)

    Article  MathSciNet  Google Scholar 

  2. O. Barraza, Self-similar solutions in weak Lp-spaces of the Navier-Stokes equations. Rev. Mat. Iberoam. 12, 411–439 (1996)

    Article  MathSciNet  Google Scholar 

  3. M.E. Bogovskii, Solutions of some problems of vector analysis, associated with the operators div and grad. (Russian) Theory of cubature formulas and the application of functional analysis to problems of mathematical physics, pp. 5–40, 149, Trudy Sem. S. L. Soboleva, No. 1, 1980, Akad. Nauk SSSR Sibirsk. Otdel., Inst. Mat., Novosibirsk, 1980. (Reviewer: G. Wildenhain), 26B12 (35C05 35Q99 46E35)

    Google Scholar 

  4. Z. Bradshaw, T.P. Tsai, Forward discretely self-similar solutions of the Navier-Stokes equations II. arXiv:1510.07504

    Google Scholar 

  5. L. Brandolese, Fine properties of self-similar solutions of the Navier-Stokes equations. (English summary) Arch. Ration. Mech. Anal. 192(3), 375–401 (2009)

    Google Scholar 

  6. L. Caffarelli, R.-V. Kohn, L. Nirenberg, Partial regularity of suitable weak solutions of the Navier-Stokes equations. Commun. Pure Appl. Math. XXXV, 771–831 (1982)

    Article  MathSciNet  Google Scholar 

  7. C.P. Calderon, Existence of weak solutions for the Navier-Stokes equations with initial data in Lp. Trans. Am. Math. Soc. 318(1), 179–200 (1990)

    MATH  Google Scholar 

  8. M. Cannone, Harmonic Analysis Tools for Solving the Incompressible Navier-Stokes Equations. Handbook of Mathematical Fluid Dynamics, vol. III (North-Holland, Amsterdam, 2004), pp. 161–244

    Google Scholar 

  9. M. Cannone, F. Planchon, Self-similar solutions for Navier-Stokes equations in R3. Commun. Partial Differ. Equ. 21(1–2), 179–193 (1996)

    Article  Google Scholar 

  10. C. Cao, E.S. Titi, Global regularity criterion for the 3D Navier-Stokes equations involving one entry of the velocity gradient tensor. Arch. Ration. Mech. Anal. 202(3), 919–932 (2011)

    Article  MathSciNet  Google Scholar 

  11. D. Chae, Nonexistence of asymptotically self-similar singularities in the Euler and the Navier-Stokes equations. Math. Ann. 338, 435–449 (2007)

    Article  MathSciNet  Google Scholar 

  12. D. Chae, On the self-similar solutions of the 3D Euler and the related equations. Commun. Math. Phys. 305(2), 333–349 (2011)

    Article  MathSciNet  Google Scholar 

  13. D. Chae, Remarks on the asymptotically discretely self-similar solutions of the Navier-Stokes and the Euler equations. Nonlinear Anal 125, 251–259 (2015)

    Article  MathSciNet  Google Scholar 

  14. D. Chae, K. Kang, J. Lee, Notes on the asymptotically self-similar singularities in the Euler and the Navier-Stokes equations. Discret. Contin. Dyn. Syst. 25(4), 1181–1193 (2009)

    Article  MathSciNet  Google Scholar 

  15. D. Chae, R. Shvydkoy, On formation of a locally self-similar collapse in the incompressible Euler equations. Arch. Ration. Mech. Anal. 209(3), 999–1017 (2013)

    Article  MathSciNet  Google Scholar 

  16. D. Chae, T.P. Tsai, On discretely self-similar solutions of the Euler equations. Math. Res. Lett. 21, 437–447 (2014)

    Article  MathSciNet  Google Scholar 

  17. P. Constantin, C. Fefferman, Direction of vorticity and the problem of global regularity for the Navier-Stokes equations. Indiana Univ. Math. J. 42(3), 775–789 (1993)

    Article  MathSciNet  Google Scholar 

  18. P. Constantin, C. Foias, Navier-Stokes Equations. Chicago Lectures in Mathematics (University of Chicago Press, Chicago, 1988)

    Google Scholar 

  19. H. Dong, D. Du, On the local smoothness of solutions of the Navier-Stokes equations. J. Math. Fluid Mech. 9(2), 139–152 (2007)

    Article  MathSciNet  Google Scholar 

  20. J. Eggers, M.A. Fontelos, The role of self-similarity in singularities of partial differential equations. Nonlinearity 22, 1–44 (2009)

    Article  MathSciNet  Google Scholar 

  21. L. Escauriaza, G.A. Seregin, V. Sverak, L3,∞-solutions of Navier-Stokes equations and backward uniqueness. Uspekhi Mat. Nauk 58(2(350)), 3–44 (2003); translation in Russ. Math. Surv. 58(2), 211–250 (2003)

    Google Scholar 

  22. K.J. Engel, R. Nagel, One-Parameter Semigoups for Linear Evolution Equations. Graduate Texts in Mathematics, vol. 194 (Springer, New York, 1999)

    Google Scholar 

  23. M. Geissert, H. Heck, M. Hieber, On the equation div u = g and Bogovskii’s operator in Sobolev spaces of negative order, in Partial Differential Equations and Functional Analysis. Operator Theory: Advances and Applications, vol. 168 (Birkhauser, Basel, 2006), pp. 113–121

    Google Scholar 

  24. Y. Giga, T. Miyakawa, Navier-Stokes flow in R3 with measures as initial vorticity and Morrey spaces. Commun. Partial Differ. Equ. 14(5), 577–618 (1989)

    Article  Google Scholar 

  25. P. Germain, N. Pavlovic, N. Staffilani, Regularity of solutions to the Navier-Stokes equations evolving from small data in BMO−1. Int. Math. Res. Not. IMRN 21, 35 pp (2007)

    Google Scholar 

  26. E. Giusti, Minimal Surfaces and Functions of Bounded Variation. Monographs in Mathematics, vol. 80 (Birkhäuser Verlag, Basel, 1984), xii+240 pp.

    Chapter  Google Scholar 

  27. E. Hopf, Über die Anfangswertaufgabe für die hydrodynamischen Grundgleichungen. Mat. Nachr. 4, 213–231 (1951)

    Article  Google Scholar 

  28. T. Hou, R. Li, Nonexistence of locally self-similar blow-up for the 3D incompressible Navier Stokes equations. Discret. Contin. Dyn. Syst. 18(4), 637–642 (2007)

    Article  MathSciNet  Google Scholar 

  29. H. Jia, V. Šverák, Minimal L3-initial data for potential Navier-Stokes singularities. SIAM J. Math. Anal. 45(3), 1448–1459 (2013)

    Article  MathSciNet  Google Scholar 

  30. H. Jia, V. Šverák, On scale invariant solutions to Navier Stokes equations, in Proceedings of 6th European Congress of Mathematicians, Krakow, 2–7 July 2012, pp. 547–553, 2014

    Google Scholar 

  31. H. Jia, V. Šverák, Local-in-space estimates near initial time for weak solutions of the Navier Stokes equations and forward self-similar solutions. Invent. Math. 196(1), 233–265 (2014)

    Article  MathSciNet  Google Scholar 

  32. H. Jia, V. Šverák, Are the incompressible 3d Navier-Stokes equations locally ill-posed in the natural energy space? J. Func. Anal. 268(12), 3734–3766 (2015)

    Article  MathSciNet  Google Scholar 

  33. L.V. Kapitanskii, K. Pileckas, On spaces of solenoidal vector fields and boundary value problems for the Navier–Stokes equations in domains with noncompact boundaries. Trudy Mat. Inst. Steklov 159, 5–36 (1983); English Translation.: Proc. Math. Inst. Steklov 159, 3–34 (1984)

    Google Scholar 

  34. T. Kato, Strong Lp-solutions of the Navier-Stokes equation in Rm, with applications to weak solutions. Math. Z. 187(4), 471–480 (1984)

    Article  MathSciNet  Google Scholar 

  35. T. Kato, Strong solutions of the Navier-Stokes equation in Morrey spaces. Bol. Soc. Brasil. Mat. (N.S.) 22(2), 127–155 (1992)

    Google Scholar 

  36. N. Kikuchi, G. Seregin, Weak solutions to the cauchy problem for the Navier-Stokes equations satisfying the local energy inequality. AMS Transl. Ser. 220(2), 141–164 (2007)

    MathSciNet  MATH  Google Scholar 

  37. A.A. Kiselev, O.A. Ladyzhenskaya, On the existence and uniqueness of the solution of the nonstationary problem for a viscous, incompressible fluid, (Russian). Izv. Akad. Nauk SSSR. Ser. Mat. 21, 655–680 (1957)

    MathSciNet  Google Scholar 

  38. H. Koch, D. Tataru, Well-posedness for the Navier-Stokes equations. Adv. Math. 157(1), 22–35 (2001)

    Article  MathSciNet  Google Scholar 

  39. M.V. Korobkov, K. Pileckas, R. Russo, On the flux problem in the theory of steady Navier-Stokes equations with nonhomogeneous boundary conditions. Arch. Ration. Mech. Anal. 207(1), 185–213 (2013)

    Article  MathSciNet  Google Scholar 

  40. M.V. Korobkov, K. Pileckas, R. Russo, Solution of Leray’s problem for stationary Navier-Stokes equations in plane and axially symmetric spatial domains. Ann. Math. 181(2), 769–807. https://doi.org/10.4007/annals.2015.181.2.7

  41. M. Korobkov, T.P. Tsai, Forward self-similar solutions of the Navier-Stokes equations in the half space. arXiv:1409.2516

    Google Scholar 

  42. I. Kukavica, M. Ziane, Navier-Stokes equations with regularity in one direction. J. Math. Phys. 48(6), 065203, 10 pp. (2007)

    Article  MathSciNet  Google Scholar 

  43. O.A. Ladyzhenskaja, Uniqueness and smoothness of generalized solutions of Navier-Stokes Equations. Zap. Naučn. Sem. Leningrad. Otdel. Mat. Inst. Steklov (LOMI) 5:169–185 (1967)

    MathSciNet  Google Scholar 

  44. O.A. Ladyzenskaja, Unique global solvability of the three-dimensional Cauchy problem for the Navier-Stokes equations in the presence of axial symmetry. Zapiski Nauchnykh Seminarov Leningrad Otdelenie. Matematicheski. Institut im. V. A. Steklova (LOMI) 7, 155–177 (1968) (Russian)

    MathSciNet  Google Scholar 

  45. O.A. Ladyzhenskaya, G.A. Seregin, On partial regularity of suitable weak solutions to the three-dimensional Navier-Stokes equations. J. Math. Fluid Mech. 1(4), 356–387 (1999)

    Article  MathSciNet  Google Scholar 

  46. O.A. Ladyzhenskaya, On Uniqueness and smoothness of generalized solutions to the Navier-Stokes equations, Zapiski Nauchn, Seminar. POMI 5, 169–185 (1967)

    Google Scholar 

  47. O.A. Ladyzhenskaya, Example of non-uniqueness in the Hopf class of weak solutions for the Navier Stokes equations. Izv. Ahad. Nauk SSSR, Ser. Mat. Tom 33(1), 229–236 (1969)

    Google Scholar 

  48. S. Leonardi, J. Malek, J. Nečas, M. Pokorny, On axially symmetric flows in R3. Zeitschrift fur Analysis und ihre Anwendungen 18, 639–49 (1999)

    Article  MathSciNet  Google Scholar 

  49. P.G. Lemarié-Rieusset, Recent Developments in the Navier-Stokes Problem. Chapman & Hall/CRC research Notes in Mathematics, vol. 431 (Chapman & Hall/CRC, Boca Raton, 2002)

    Book  Google Scholar 

  50. J. Leray, Etude de diverses équations intégrales non linéaires et de quelques problèmes que pose l’hydrodynamique. J. Math. Pures Appl. 12, 1–82 (1933)

    MATH  Google Scholar 

  51. J. Leray, Sur le mouvement d’un liquide visqueux emplissant l’espace. Acta Math. 63, 193–248 (1934)

    Article  MathSciNet  Google Scholar 

  52. F-H. Lin, A new proof of the Caffarelli-Korn-Nirenberg theorem. Commun. Pure Appl. Math. 51(3), 241–257 (1998)

    Article  Google Scholar 

  53. J. Mawhin, Leray-Schauder degree: a half century of extensions and applications. Topological methods in nonlinear analysis. J. Juliusz Schauder Cent. 14, 195–228 (1999)

    Article  MathSciNet  Google Scholar 

  54. H. Miura, O. Sawada, On the regularizing rate estimates of Koch-Tataru’s solution to the Navier-Stokes equations. Asymptot. Anal. 49(1–2), 1–15 (2006)

    MathSciNet  MATH  Google Scholar 

  55. J. Necas, M. Ruzicka, V. Šverák, On Leray’s self-similar solutions of the Navier-Stokes equations. Acta Math. 176(2), 283–294 (1996)

    Article  MathSciNet  Google Scholar 

  56. G. Prodi, Un teorema di unicità per el equazioni di Navier-Stokes. Ann Mat. Pura Appl. 48, 173–182 (1959)

    Article  MathSciNet  Google Scholar 

  57. W. Rusin, V. Šverák, Minimal initial data for Potential Navier-Stokes singularities. J. Funct. Anal. 260(3), 879–891

    Article  MathSciNet  Google Scholar 

  58. V. Scheffer, Hausdorff measure and the Navier-Stokes equations. Commun. Math. Phys. 55(2), 97–112 (1977)

    Article  MathSciNet  Google Scholar 

  59. R. Schoen, K. Uhlenbeck, A regularity theory for harmonic maps. J. Differ. Geom. 17(2), 307–335 (1982)

    Article  MathSciNet  Google Scholar 

  60. G. Seregin, A certain necessary condition for potential blow-up for Navier-Stokes equations. Commun. Math. Phys. 312(3), 833–845 (2012)

    Article  MathSciNet  Google Scholar 

  61. J. Serrin, On the interior regularity of weak solutions of the Navier-Stokes equations. Arch. Rat. Mech. Anal. 9, 187–195 (1962)

    Article  MathSciNet  Google Scholar 

  62. R. Shvydkoy, Homogeneous solutions to the 3D Euler system. arXiv:1510.03378

    Google Scholar 

  63. H. Sohr, Zur Regularitätstheorie der instationären Gleichungen von Navier Stokes. Math. Z. 184(3), 359–375 (1983)

    Article  MathSciNet  Google Scholar 

  64. V.A. Solonnikov, Estimates for solutions of a non-stationary linearized system of Navier-Stokes equations. Trudy Mat. Inst. Steklov. 70, 213–317 (1964). English translation in A.M.S. Translations, Series II 75, 1–117

    Google Scholar 

  65. V.A. Solonnikov, Estimates for solutions of the nonstationary Stokes problem in anisotropic Sobolev spaces and estimates for the resolvent of the Stokes operator. (Russian. Russian summary) Uspekhi Mat. Nauk 58(2(350)), 123–156 (2003); translation in Russ. Math. Surv. 58(2), 331–365 (2003)

    Google Scholar 

  66. E. Stein, Harmonic Analysis: Real-Variable Methods, Orthogonality and Oscillatory Integrals. Princeton Mathematical Series, vol. 43. Monographs in Harmonic Analysis, III (Princeton University Press, Princeton, 1993). xiv+695 pp.

    Google Scholar 

  67. R. Temam, Navier-Stokes equations, in Theory and Numerical Analysis. Revised Edition. Studies in Mathematics and its Applications, vol. 2 (North-Holland Publishing Co., Amsterdam/New York, 1979)

    Google Scholar 

  68. T. Tao, Localization and compactness properties of the Navier-Stokes global regularity problem. arXiv:1108.1165v3

    Google Scholar 

  69. G.I. Taylor, Stability of a viscous liquid contained between two rotating cylinders. Phil. Trans. R. Soc. Lond. A 223, 289-343 (1923)

    Article  Google Scholar 

  70. T.-P. Tsai, On Leray’s self-similar solutions of the Navier-Stokes equations satisfying local energy estimates. Arch. Ration. Mech. Anal. 143(1), 29–51 (1998)

    Article  MathSciNet  Google Scholar 

  71. T.-P. Tsai, Forward discretely self-similar solutions of the Navier-Stokes equations. Commun. Math. Phys. 328(1), 29–44 (2014)

    Article  MathSciNet  Google Scholar 

  72. M.R. Ukhovskii, V.I. Yudovich, Axially symmetric flows of ideal and viscous fluids filling the whole space. J. Appl. Math. Mech. 32, 52–61 (1968)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hao Jia .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Jia, H., Šverák, V., Tsai, TP. (2018). Self-Similar Solutions to the Nonstationary Navier-Stokes Equations. In: Giga, Y., Novotný, A. (eds) Handbook of Mathematical Analysis in Mechanics of Viscous Fluids. Springer, Cham. https://doi.org/10.1007/978-3-319-13344-7_9

Download citation

Publish with us

Policies and ethics