Skip to main content

Lightweight Zero-Knowledge Proofs for Crypto-Computing Protocols

  • Conference paper
Information Security (ISC 2014)

Part of the book series: Lecture Notes in Computer Science ((LNSC,volume 8783))

Included in the following conference series:

Abstract

Crypto-computing is a set of well-known techniques for computing with encrypted data. The security of the corresponding protocols are usually proven in the semi-honest model. In this work, we propose a new class of zero-knowledge proofs, which are tailored for crypto-computing protocols. First, these proofs directly employ properties of the underlying crypto systems and thus many facts have more concise proofs compared to generic solutions. Second, we show how to achieve universal composability in the trusted set-up model where all zero-knowledge proofs share the same system-wide parameters. Third, we derive a new protocol for multiplicative relations and show how to combine it with several crypto-computing frameworks.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aiello, W., Ishai, Y., Reingold, O.: Priced oblivious transfer: How to sell sigital goods. In: Pfitzmann, B. (ed.) EUROCRYPT 2001. LNCS, vol. 2045, pp. 119–135. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  2. Boneh, D., Goh, E.-J., Nissim, K.: Evaluating 2-DNF Formulas on Ciphertexts. In: Kilian, J. (ed.) TCC 2005. LNCS, vol. 3378, pp. 325–341. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  3. Bellare, M., Hoang, V.T., Rogaway, P.: Foundations of garbled circuits. In: Proc. of ACM CCS, pp. 784–796. ACM (2012)

    Google Scholar 

  4. Blake, I.F., Kolesnikov, V.: Strong conditional oblivious transfer and computing on intervals. In: Lee, P.J. (ed.) ASIACRYPT 2004. LNCS, vol. 3329, pp. 515–529. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  5. Canetti, R.: Universally composable security: A new paradigm for cryptographic protocols. In: Proc. of FOCS 2001, pp. 136–145. IEEE (2001)

    Google Scholar 

  6. Cramer, R., Damgård, I., Schoenmakers, B.: Proof of partial knowledge and simplified design of witness hiding protocols. In: Desmedt, Y.G. (ed.) CRYPTO 1994. LNCS, vol. 839, pp. 174–187. Springer, Heidelberg (1994)

    Google Scholar 

  7. Canetti, R., Rabin, T.: Universal composition with joint state. In: Boneh, D. (ed.) CRYPTO 2003. LNCS, vol. 2729, pp. 265–281. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  8. Damgård, I., Jurik, M.: A generalisation, a simplification and some applications of Paillier’s probabilistic public-key system. In: Kim, K. (ed.) PKC 2001. LNCS, vol. 1992, pp. 119–136. Springer, Heidelberg (2001)

    Google Scholar 

  9. Damgård, I., Pastro, V., Smart, N., Zakarias, S.: Multiparty computation from somewhat homomorphic encryption. In: Safavi-Naini, R., Canetti, R. (eds.) CRYPTO 2012. LNCS, vol. 7417, pp. 643–662. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  10. El Gamal, T.: A public key cryptosystem and a signature scheme based on discrete logarithms. In: Blakely, G.R., Chaum, D. (eds.) CRYPTO 1984. LNCS, vol. 196, pp. 10–18. Springer, Heidelberg (1985)

    Google Scholar 

  11. Gentry, C.: Fully homomorphic encryption using ideal lattices. In: Proc. of STOC 2009, pp. 169–178. ACM (2009)

    Google Scholar 

  12. Gentry, C., Halevi, S., Smart, N.P.: Fully homomorphic encryption with polylog overhead. In: Pointcheval, D., Johansson, T. (eds.) EUROCRYPT 2012. LNCS, vol. 7237, pp. 465–482. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  13. Gertner, Y., Ishai, Y., Kushilevitz, E., Malkin, T.: Protecting data privacy in private information retrieval schemes. In: Proc. of STOC 1998, pp. 151–160. ACM (1998)

    Google Scholar 

  14. Goldwasser, S., Micali, S., Rackoff, C.: The knowledge complexity of interactive proof systems. SIAM J. Comput. 18(1), 186–208 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  15. Groth, J., Ostrovsky, R., Sahai, A.: Non-interactive Zaps and New Techniques for NIZK. In: Dwork, C. (ed.) CRYPTO 2006. LNCS, vol. 4117, pp. 97–111. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  16. Groth, J.: Short pairing-based non-interactive zero-knowledge arguments. In: Abe, M. (ed.) ASIACRYPT 2010. LNCS, vol. 6477, pp. 321–340. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  17. Ishai, Y., Paskin, A.: Evaluating branching programs on encrypted data. In: Vadhan, S.P. (ed.) TCC 2007. LNCS, vol. 4392, pp. 575–594. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  18. Laur, S., Lipmaa, H.: A new protocol for conditional disclosure of secrets and its applications. In: Katz, J., Yung, M. (eds.) ACNS 2007. LNCS, vol. 4521, pp. 207–225. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  19. Lindell, Y.: General composition and universal composability in secure multi-party computation. In: Proc. of FOCS 2003, pp. 394–403 (2003)

    Google Scholar 

  20. Paillier, P.: Public-key cryptosystems based on composite degree residuosity classes. In: Stern, J. (ed.) EUROCRYPT 1999. LNCS, vol. 1592, pp. 223–238. Springer, Heidelberg (1999)

    Chapter  Google Scholar 

  21. Smart, N.P., Vercauteren, F.: Fully Homomorphic SIMD Operations. IACR Cryptology ePrint Archive, 2011:133 (2011)

    Google Scholar 

  22. Sander, T., Young, A.L., Yung, M.: Non-Interactive CryptoComputing For NC1. In: Proc. of FOCS 1999, pp. 554–567. IEEE Computer Society (1999)

    Google Scholar 

  23. Yao, A.C.-C.: Protocols for secure computations. In: Proc. of FOCS 1982, pp. 160–164. IEEE Computer Society (1982)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Laur, S., Zhang, B. (2014). Lightweight Zero-Knowledge Proofs for Crypto-Computing Protocols. In: Chow, S.S.M., Camenisch, J., Hui, L.C.K., Yiu, S.M. (eds) Information Security. ISC 2014. Lecture Notes in Computer Science, vol 8783. Springer, Cham. https://doi.org/10.1007/978-3-319-13257-0_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-13257-0_9

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-13256-3

  • Online ISBN: 978-3-319-13257-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics