Skip to main content

Synthesis and Characterization of Nanomaterials Using Microfluidic Technology

  • Living reference work entry
  • First Online:
Handbook of Nanoparticles

Abstract

Nanomaterials have attracted tremendous interest during the past two decades. Microfluidic technology offers an alternative strategy for the synthesis and characterization of nanomaterials with controlled properties. The convergence of nanomaterials and microfluidic technology affords an enormous opportunity for the further development of novel nanomaterials for various applications. This chapter covers recent achievements and the latest trends in the synthesis and characterization of nanomaterials using microfluidic technology.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. (a) S. Marre, K.F. Jensen, Chem. Soc. Rev. 39, 1183 (2010); (b) G.S. Luo, L. Du, Y.J. Wang, Y.C. Lu, J.H. Xu, Particuology 9, 545 (2011); (c) C.X. Zhao, L.Z. He, S.Z. Qiao, A.P.J. Middelberg, Chem. Eng. Sci. 66, 1463 (2011); (d) C.X. Zhao, A.P.J. Middelberg, Chem. Eng. Sci. 66, 1394 (2011)

    Google Scholar 

  2. Y.J. Song, J. Hormes, C.S.S.R. Kumar, Small 4, 698 (2008)

    Article  Google Scholar 

  3. (a) H.Z. Wang, H. Nakamura, M. Uehara, Y. Yamaguchi, M. Miyazaki, H. Maeda, Adv. Funct. Mater. 15, 603 (2005); (b) F. Jamal, G. Jean-Sebastien, P. Mael, P. Edmond, R. Christian, Microsyst. Technol. 18, 151 (2012)

    Google Scholar 

  4. (a) H. Nakamura, A. Tashiro, Y. Yamaguchi, M. Miyazaki, T. Watari, H. Shimizu, H. Maeda, Lab Chip 4, 237 (2004); (b) A.M. Nightingale, J.C. de Mello, Chemphyschem 10, 2612 (2009)

    Google Scholar 

  5. J. Ftouni, M. Penhoat, A. Addad, E. Payen, C. Rolando, J.S. Girardon, Nanoscale 4, 4450 (2012)

    Article  Google Scholar 

  6. (a) W.L. Luan, H.W. Yang, N.N. Fan, S.T. Tu, Nanoscale Res. Lett. 3, 134 (2008); (b) Z. Wan, H.W. Yang, W.L. Luan, S.T. Tu, X.G. Zhou, Nanoscale Res. Lett. 5, 130 (2010); (c) S.A. Khan, A. Gunther, M.A. Schmidt, K.F. Jensen, Langmuir 20, 8604 (2004)

    Google Scholar 

  7. S. Duraiswamy, S.A. Khan, Small 5, 2828 (2009)

    Article  Google Scholar 

  8. E.M. Chan, A.P. Alivisatos, R.A. Mathies, J. Am. Chem. Soc. 127, 13854 (2005)

    Article  Google Scholar 

  9. S.K. Lee, X.Y. Liu, V.S. Cabeza, K.F. Jensen, Lab Chip 12, 4080 (2012)

    Article  Google Scholar 

  10. S. Gomez-de Pedro, M. Puyol, J. Alonso-Chamarro, Nanotechnology 21 415603 (2010)

    Google Scholar 

  11. (a) R. Karnik, F. Gu, P. Basto, C. Cannizzaro, L. Dean, W. Kyei-Manu, R. Langer, O.C. Farokhzad, Nano Lett. 8, 2906 (2008); (b) N. Kolishetti, S. Dhar, P.M. Valencia, L.Q. Lin, R. Karnik, S.J. Lippard, R. Langer, O.C. Farokhzad, Proc. Natl. Acad. Sci. U. S. A. 107, 17939 (2010)

    Google Scholar 

  12. (a) F.S. Majedi, M.M. Hasani-Sadrabadi, S.H. Emami, M. Taghipoor, E. Dashtimoghadam, A. Bertsch, H. Moaddel, P. Renaud, Chem. Commun. 48, 7744 (2012); (b) F.S. Majedi, M.M. Hasani-Sadrabadi, S.H. Emami, M.A. Shokrgozar, J.J. VanDersarl, E. Dashtimoghadam, A. Bertsch, P. Renaud, Lab Chip 13, 204 (2013)

    Google Scholar 

  13. (a) A. Jahn, W.N. Vreeland, M. Gaitan, L.E. Locascio, J. Am. Chem. Soc. 126, 2674 (2004); (b) J.S. Hong, S.M. Stavis, S.H.D. Lacerda, L.E. Locascio, S.R. Raghavan, M. Gaitan, Langmuir 26, 11581 (2010); (c) M. Mijajlovic, D. Wright, V. Zivkovic, J.X. Bi, M.J. Biggs, Colloids Surf. B 104, 276 (2013)

    Google Scholar 

  14. V.S. Cabeza, S. Kuhn, A.A. Kulkarni, K.F. Jensen, Langmuir 28, 7007 (2012)

    Article  Google Scholar 

  15. D.V.R. Kumar, B.L.V. Prasad, A.A. Kulkarni, Chem. Eng. J. 192, 357 (2012)

    Article  Google Scholar 

  16. (a) I. Doh, E.Y. Erdem, A.P. Pisano, Appl. Phys. Lett. 100, 074106 (2012); (b) L.H. Hung, K.M. Choi, W.Y. Tseng, Y.C. Tan, K.J. Shea, A.P. Lee, Lab Chip 6, 174 (2006); (c) L.L. Lazarus, C.T. Riche, B.C. Marin, M. Gupta, N. Malmstadt, R.L. Brutchey, ACS Appl. Mater. Interfaces 4, 3077 (2012); (d) J.B. Wacker, I. Lignos, V.K. Parashar, M.A.M. Gijs, Lab Chip 12, 3111 (2012)

    Google Scholar 

  17. D. Habault, A. Dery, J. Leng, S. Lecommandoux, J.F. Le Meins, O. Sandre, IEEE Trans. Magn. 49, 182 (2013)

    Article  Google Scholar 

  18. (a) P.H. Hoang, H. Park, D.P. Kim, J. Am. Chem. Soc. 133, 14765 (2011); (b) P.H. Hoang, K.B. Yoon, D.P. Kim, RSC Adv. 2, 5323 (2012)

    Google Scholar 

  19. (a) K. Kumar, A.M. Nightingale, S.H. Krishnadasan, N. Kamaly, M. Wylenzinska-Arridge, K. Zeissler, W.R. Branford, E. Ware, A.J. deMello, J.C. deMello, J. Mater. Chem. 22, 4704 (2012); (b) A.M. Nightingale, S.H. Krishnadasan, D. Berhanu, X. Niu, C. Drury, R. McIntyre, E. Valsami-Jones, J.C. deMello, Lab Chip 11, 1221 (2011)

    Google Scholar 

  20. A.M. Nightingale, J.H. Bannock, S.H. Krishnadasan, F.T.F. O’Mahony, S.A. Haque, J. Sloan, C. Drury, R. McIntyre, J.C. deMello, J. Mater. Chem. A 1, 4067 (2013)

    Article  Google Scholar 

  21. H.Z. Wang, X.Y. Li, M. Uehara, Y. Yamaguchi, H. Nakamura, M.P. Miyazaki, H. Shimizu, H. Maeda, Chem. Commun. 48 (2004)

    Google Scholar 

  22. J.C. McDonald, G.M. Whitesides, Acc. Chem. Res. 35, 491 (2002); (b) S.K. Sia, G.M. Whitesides, Electrophoresis 24, 3563 (2003)

    Google Scholar 

  23. B.H. Kwon, K.G. Lee, T.J. Park, H. Kim, T.J. Lee, S.J. Lee, D.Y. Jeon, Small 8, 3257 (2012)

    Article  Google Scholar 

  24. (a) J.B. Edel, R. Fortt, J.C. deMello, A.J. deMello, Chem. Commun. 1136 (2002); (b) J.M. Kohler, H. Romanus, U. Hubner, J. Wagner, J. Nanomater. 98134 (2007); (c) J. Wagner, T.R. Tshikhudo, J.M. Koehler, Chem. Eng. J. 135, S104 (2008)

    Google Scholar 

  25. (a) P.M. Valencia, P.A. Basto, L.F. Zhang, M. Rhee, R. Langer, O.C. Farokhzad, R. Karnik, ACS Nano 4, 1671 (2010); (b) M.M. Hasani-Sadrabadi, F.S. Majedi, J.J. VanDersarl, E. Dashtimoghadam, S.R. Ghaffarian, A. Bertsch, H. Moaddel, P. Renaud, J. Am. Chem. Soc. 134, 18904 (2012)

    Google Scholar 

  26. H. Song, J.D. Tice, R.F. Ismagilov, Angew. Chem. Int. Ed. 42, 768 (2003)

    Article  Google Scholar 

  27. I. Shestopalov, J.D. Tice, R.F. Ismagilov, Lab Chip 4, 316 (2004)

    Article  Google Scholar 

  28. L.H. Hung, S.Y. Teh, J. Jester, A.P. Lee, Lab Chip 10, 1820 (2010)

    Article  Google Scholar 

  29. K.Y. Liu, J.H. Qin, Nanotechnology 24 125602 (2013)

    Google Scholar 

  30. J.D. Winterton, D.R. Myers, J.M. Lippmann, A.P. Pisano, F.M. Doyle, J. Nanopart. Res. 10, 893 (2008)

    Article  Google Scholar 

  31. (a) A.L. Abdelhady, M. Afzaal, M.A. Malik, P. O’Brien, J. Mater. Chem. 21, 18768 (2011); (b) E.M. Chan, R.A. Mathies, A.P. Alivisatos, Nano Lett. 3, 199 (2003); (c) S. Gomez-de Pedro, M. Puyol, D. Izquierdo, I. Salinas, J.M. de la Fuente, J. Alonso-Chamarro, Nanoscale 4, 1328 (2012); (d) S. Krishnadasan, R.J.C. Brown, A.J. deMello, J.C. deMello, Lab Chip 7, 1434 (2007); (e) S. Krishnadasan, J. Tovilla, R. Vilar, A.J. deMello, J.C. deMello, J. Mater. Chem. 14, 2655 (2004)

    Google Scholar 

  32. (a) P.T. Shao, H.Z. Wang, Q.H. Zhang, Y.G. Li, J. Mater. Chem. 21, 17972 (2011); (b) A. Singh, M. Limaye, S. Singh, N.P. Lalla, C.K. Malek, S. Kulkarni, Nanotechnology 19 245613 (2008)

    Google Scholar 

  33. (a) S. Agrawal, A. Morarka, K.M. Paknikar, D. Bodas, Microelectron. Eng. 90, 104 (2012); (b) J. Boleininger, A. Kurz, V. Reuss, C. Sonnichsen, Phys. Chem. Chem. Phys. 8, 3824 (2006); (c) S.A. Khan, S. Duraiswamy, Lab Chip 12, 1807 (2012); (d) L.L. Lazarus, A.S.J. Yang, S. Chu, R.L. Brutchey, N. Malmstadt, Lab Chip 10, 3377 (2010); (e) J. Polte, R. Erler, A.F. Thunemann, S. Sokolov, T.T. Ahner, K. Rademann, F. Emmerling, R. Kraehnert, ACS Nano 4, 1076 (2010); (f) D. Shalom, R.C.R. Wootton, R.F. Winkle, B.F. Cottam, R. Vilar, A.J. deMello, C.P. Wilde, Mater. Lett. 61, 1146 (2007); (g) K. Sugano, Y. Uchida, O. Ichihashi, H. Yamada, T. Tsuchiya, O. Tabata, Microfluid. Nanofluid. 9, 1165 (2010); (h) C.H. Weng, C.C. Huang, C.S. Yeh, H.Y. Lei, G.B. Lee, J. Micromech. Microeng. 18 035019 (2008); (i) S.Y. Yang, F.Y. Cheng, C.S. Yeh, G.B. Lee, Microfluid. Nanofluid. 8, 303 (2010)

    Google Scholar 

  34. (a) D.V.R. Kumar, M. Kasture, A.A. Prabhune, C.V. Ramana, B.L.V. Prasad, A.A. Kulkarni, Green Chem. 12, 609 (2010); (b) H.Y. Liu, J.L. Huang, D.H. Sun, L.Q. Lin, W.S. Lin, J. Li, X.D. Jiang, W.W. Wu, Q.B. Li, Chem. Eng. J. 209, 568 (2012); (c) S. Silvestrini, T. Carofiglio, M. Maggini, Chem. Commun. 49, 84 (2013)

    Google Scholar 

  35. L. Sun, W.L. Luan, Y.J. Shan, S.T. Tu, Chem. Eng. J. 189, 451 (2012)

    Article  Google Scholar 

  36. Y.J. Song, H. Modrow, L.L. Henry, C.K. Saw, E.E. Doomes, V. Palshin, J. Hormes, C.S.S.R. Kumar, Chem. Mater. 18, 2817 (2006)

    Article  Google Scholar 

  37. (a) A. Abou Hassan, O. Sandre, V. Cabuil, P. Tabeling, Chem. Commun. 1783 (2008); (b) A. Abou-Hassan, R. Bazzi, V. Cabuil, Angew. Chem. Int. Ed. 48, 7180 (2009); (c) N. Hassan, V. Cabuil, A. Abou-Hassan, Angew. Chem. Int. Ed. 52, 1994 (2013); (d) C.C. Huang, M.D. Wu, D. Liang, J. Yu, P.J. Shih, W.P. Shih, J. Nanomater. 986454 (2012); (e) W.B. Lee, C.H. Weng, F.Y. Cheng, C.S. Yeh, H.Y. Lei, G.B. Lee, Biomed. Microdevices 11, 161 (2009); (f) Y.J. Song, P.Y. Jin, T. Zhang, Mater. Lett. 64, 1789 (2010)

    Google Scholar 

  38. (a) S.W. Li, H.H. Xu, Y.J. Wang, G.S. Luo, Langmuir 24, 4194 (2008); (b) S.W. Li, J.H. Xu, Y.J. Wang, G.S. Luo, AIChE J. 55, 3041 (2009); (c) Y.F. Su, H. Kim, S. Kovenklioglu, W.Y. Lee, J. Solid State Chem. 180, 2625 (2007); (d) Q.A. Wang, J.X. Wang, M. Li, L. Shao, J.F. Chen, L. Gu, Y.T. An, Chem. Eng. J. 149, 473 (2009); (e) Y. Ying, G.W. Chen, Y.C. Zhao, S.L. Li, Q. Yuan, Chem. Eng. J. 135, 209 (2008)

    Google Scholar 

  39. B.Y. Xu, Z.Q. Yang, J.J. Xu, X.H. Xia, H.Y. Chen, Chem. Commun. 48, 11635 (2012)

    Article  Google Scholar 

  40. (a) Y.J. Song, R.S. Li, Q.Q. Sun, P.Y. Jin, Chem. Eng. J. 168, 477 (2011); (b) Y.X. Zhang, W. Jiang, L.Q. Wang, Microfluid. Nanofluid. 9, 727 (2010)

    Google Scholar 

  41. (a) C.K. Chung, T.R. Shih, C.K. Chang, C.W. Lai, B.H. Wu, Chem. Eng. J. 168, 790 (2011); (b) L. Gutierrez, L. Gomez, S. Irusta, M. Arruebo, J. Santamaria, Chem. Eng. J. 171, 674 (2011); (c) P. He, G. Greenway, S.J. Haswell, Chem. Eng. J. 167, 694 (2011); (d) J. Wacker, V.K. Parashar, M.A.M. Gijs, Procedia Chem. 1, 377 (2009)

    Google Scholar 

  42. (a) B.F. Cottam, S. Krishnadasan, A.J. deMello, J.C. deMello, M.S.P. Shaffer, Lab Chip 7, 167 (2007); (b) S.A. Khan, K.F. Jensen, Adv. Mater. 19, 2556 (2007)

    Google Scholar 

  43. (a) J.X. Ju, C.F. Zeng, L.X. Zhang, N.P. Xu, Chem. Eng. J. 116, 115 (2006); (b) Y.C. Pan, J.F. Yao, L.X. Zhang, N.P. Xu, Ind. Eng. Chem. Res. 48, 8471 (2009)

    Google Scholar 

  44. M. Rhee, P.M. Valencia, M.I. Rodriguez, R. Langer, O.C. Farokhzad, R. Karnik, Adv. Mater. 23, H79 (2011)

    Article  Google Scholar 

  45. (a) N. Anton, F. Bally, C.A. Serra, A. Ali, Y. Arntz, Y. Mely, M.J. Zhao, E. Marchioni, A. Jakhmola, T.F. Vandamme, Soft Matter 8, 10628 (2012); (b) B. Laulicht, P. Cheifetz, E. Mathiowitz, A. Tripathi, Langmuir 24, 9717 (2008)

    Google Scholar 

  46. F. Bally, D.K. Garg, C.A. Serra, Y. Hoarau, N. Anton, C. Brochon, D. Parida, T. Vandamme, G. Hadziioannou, Polymer 53, 5045 (2012)

    Article  Google Scholar 

  47. L. Capretto, S. Mazzitelli, G. Colombo, R. Piva, L. Penolazzi, R. Vecchiatini, X. Zhang, C. Nastruzzi, Int. J. Pharm. 440, 195 (2013)

    Article  Google Scholar 

  48. F. Schutze, B. Stempfle, C. Jungst, D. Woll, A. Zumbusch, S. Mecking, Chem. Commun. 48, 2104 (2012)

    Article  Google Scholar 

  49. T. Endres, M.Y. Zheng, M. Beck-Broichsitter, O. Samsonova, H. Debus, T. Kissel, J. Control. Release 160, 583 (2012)

    Article  Google Scholar 

  50. (a) T. Ishizaka, A. Ishigaki, M. Chatterjee, A. Suzuki, T.M. Suzuki, H. Kawanami, Chem. Commun. 46, 7214 (2010); (b) T. Ishizaka, A. Ishigaki, A. Suzuki, T.M. Suzuki, H. Kawanami, Chem. Lett. 41, 221 (2012)

    Google Scholar 

  51. C. Petschacher, A. Eitzlmayr, M. Besenhard, J. Wagner, J. Barthelmes, A. Bernkop-Schnurch, J.G. Khinast, A. Zimmer, Polym. Chem.UK 4, 2342 (2013)

    Article  Google Scholar 

  52. E. Rondeau, J.J. Cooper-White, Langmuir 24, 6937 (2008)

    Article  Google Scholar 

  53. T.H. Tran, C.T. Nguyen, D.P. Kim, Y.K. Lee, K.M. Huh, Lab Chip 12, 589 (2012)

    Article  Google Scholar 

  54. C.W. Wang, A. Oskooei, D. Sinton, M.G. Moffitt, Langmuir 26, 716 (2010)

    Article  Google Scholar 

  55. (a) A. Jahn, W.N. Vreeland, D.L. DeVoe, L.E. Locascio, M. Gaitan, Langmuir 23, 6289 (2007); (b) B. Yu, R.J. Lee, L.J. Lee, Methods Enzymol. 465, 129 (2009); (c) J.M. Zook, W.N. Vreeland, Soft Matter 6, 1352 (2010)

    Google Scholar 

  56. K. Jasch, N. Barth, S. Fehr, H. Bunjes, W. Augustin, S. Scholl, Chem. Eng. Technol. 32, 1806 (2009)

    Article  Google Scholar 

  57. (a) D.L. Chen, K.T. Love, Y. Chen, A.A. Eltoukhy, C. Kastrup, G. Sahay, A. Jeon, Y.Z. Dong, K.A. Whitehead, D.G. Anderson, J. Am. Chem. Soc. 134, 6948 (2012); (b) A.K.K. Leung, I.M. Hafez, S. Baoukina, N.M. Belliveau, I.V. Zhigaltsev, E. Afshinmanesh, D.P. Tieleman, C.L. Hansen, M.J. Hope, P.R. Cullis, J. Phys. Chem. C 116, 18440 (2012)

    Google Scholar 

  58. A.M. Nightingale, J.C. de Mello, J. Mater. Chem. 20, 8454 (2010)

    Article  Google Scholar 

  59. (a) S. Marre, J. Park, J. Rempel, J. Guan, M.G. Bawendi, K.F. Jensen, Adv. Mater. 20, 4830 (2008); (b) R.S. Xie, Y.L. Li, L.Y. Liu, L. Yang, D.Q. Xiao, J.G. Zhu, Mater. Charact. 62, 582 (2011)

    Google Scholar 

  60. J.S. Steckel, J.P. Zimmer, S. Coe-Sullivan, N.E. Stott, V. Bulovic, M.G. Bawendi, Angew. Chem. Int. Ed. 43, 2154 (2004)

    Article  Google Scholar 

  61. J. Wagner, J.M. Kohler, Nano Lett. 5, 685 (2005)

    Article  Google Scholar 

  62. Z.L. Xue, A.D. Terepka, Y. Hong, Nano Lett. 4, 2227 (2004)

    Article  Google Scholar 

  63. A.J.C. Kuehne, D.A. Weitz, Chem. Commun. 47, 12379 (2011)

    Article  Google Scholar 

  64. J. Leng, S.U. Egelhaaf, M.E. Cates, Biophys. J. 85, 1624 (2003)

    Article  Google Scholar 

  65. C.G. Koh, X.L. Zhang, S.J. Liu, S. Golan, B. Yu, X.J. Yang, J.J. Guan, Y. Jin, Y. Talmon, N. Muthusamy, K.K. Chan, J.C. Byrd, R.J. Lee, G. Marcucci, L.J. Lee, J. Control. Release 141, 62 (2010)

    Article  Google Scholar 

  66. (a) M.K. Mulligan, J.P. Rothstein, Microfluid. Nanofluid. 13, 65 (2012); (b) T. Nisisako, T. Ando, T. Hatsuzawa, Lab Chip 12, 3426 (2012)

    Google Scholar 

  67. T. Nisisako, T. Torii, Lab Chip 8, 287 (2008)

    Article  Google Scholar 

  68. M.B. Romanowsky, A.R. Abate, A. Rotem, C. Holtze, D.A. Weitz, Lab Chip 12, 802 (2012)

    Article  Google Scholar 

Download references

Acknowledgments

Dr Chun-Xia Zhao acknowledges financial support from the Australian Research Council (ARC) through the award of an Australian Postdoctoral Fellowship (DP110100394) and 2014 ARC Future Fellowship (FT140100726). Prof. Anton P.J. Middelberg acknowledges the award of the 2010 Queensland Premier’s Science Fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chun-Xia Zhao .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this entry

Cite this entry

Zhao, CX., Middelberg, A.P.J. (2015). Synthesis and Characterization of Nanomaterials Using Microfluidic Technology. In: Aliofkhazraei, M. (eds) Handbook of Nanoparticles. Springer, Cham. https://doi.org/10.1007/978-3-319-13188-7_23-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-13188-7_23-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Online ISBN: 978-3-319-13188-7

  • eBook Packages: Springer Reference Chemistry and Mat. ScienceReference Module Physical and Materials ScienceReference Module Chemistry, Materials and Physics

Publish with us

Policies and ethics