Skip to main content

The Design of Rapid Transit Networks

  • Chapter
  • First Online:
Location Science

Abstract

Metro and other rapid transit systems increase the mobility of urban populations while decreasing congestion and pollution. There are now 191 cities with a metro system in the world, 49 of which were inaugurated in the twenty-first century. The design of a rapid transit system is a hard problem involving several players, multiple objectives, sizeable costs and a high level of uncertainty. Operational research techniques cannot fully solve the problem, but they can generate alternative solutions among which the decision makers can choose, and be employed to solve some specific subproblems. The scientific literature on rapid transit location planning has grown at a fast rate over the past 20 years. In this chapter an account of some of the most important results are provided. First the main objectives and indices used in the assessment of rapid transit systems are described. Then the main models and algorithms used to design such systems are reviewed. The case of a single alignment and of a full network are treated separately. Then follows a section on the location of stations on an already existing network.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Barbadillo J, Saldaña J (2011) Navigation in large subway networks: an informational approach. Physica A 390:374–386

    Article  Google Scholar 

  • Barrena E, De-Los-Santos A, Mesa JA, Perea F (2013) Analyzing connectivity in collective transportation line networks by means of hypergraphs. Eur Phys J ST 215:93–108

    Article  Google Scholar 

  • Bruno G, Ghiani G, Improta G (1998) A multi-modal approach to the location of a rapid transit line. Eur J Oper Res 104:321–332

    Article  Google Scholar 

  • Bruno G, Gendreau M, Laporte G (2002) A heuristic for the location of a rapid transit line. Comput Oper Res 29:1–12

    Article  Google Scholar 

  • Cadarso L, Marín A (2012) Recoverable robustness in rapid transit network design. In: 15th meeting of the Euro Working Group on transportation, September 2012, Paris, pp 1–10

    Google Scholar 

  • Carrizosa E, Harbering J, Schöbel A (2013) The stop location problem with realistic traveling time. In: Frigioni D, Stiller S (eds) 13th workshop on algorithmic approaches for transportation modeling, optimization and systems (ATMOS’13), OASICS Schloss Dagstuhl, Germany, pp 80–93

    Google Scholar 

  • Criado R, Hernández-Bermejo B, Romance M (2007) Efficiency, vulnerability and cost: an overview with applications to subway networks worldwide. Int J Bifurcation Chaos 17:2289–2301

    Article  Google Scholar 

  • Current JR, ReVelle CS, Cohon J (1985) The maximum covering/shortest path problems: a multiobjective network design and routing formulation. Eur J Oper Res 21:189–199

    Article  Google Scholar 

  • De Cea J, Ortúzar JD, Willumsen LG (1986) Evaluating marginal improvements to a transport network: an application to the Santiago underground. Transportation 13:211–233

    Article  Google Scholar 

  • De-Los-Santos A, Laporte G, Mesa JA, Perea F (2012) Evaluating passenger robustness in a rail transit network. Transp Res C Emerg Technol 20:34–46

    Article  Google Scholar 

  • Derrible S, Kennedy C (2010) The complexity and robustness of metro networks. Physica A 389:3678–3691

    Article  Google Scholar 

  • Díaz JM, Mesa JA, Schöbel A (2004) Continuous location of dimensional structures. Eur J Oper Res 152:22–44

    Article  Google Scholar 

  • Dufourd H, Gendreau M, Laporte G (1996) Locating a transit line using tabu search. Locat Sci 4:1–19

    Article  Google Scholar 

  • Escudero LF, Muñoz S (2009) An approach for solving a modification of the extended rapid transit network design problem. TOP 17:320–334

    Article  Google Scholar 

  • García-Archilla B, Lozano AJ, Mesa JA, Perea F (2013) GRASP algorithms for the robust railway network design problem. J Heuristics 19:399–422

    Article  Google Scholar 

  • Gattuso D, Miriello E (2005) Compared analysis of metro network supported by graph theory. Netw Spat Econ 5:395–414

    Article  Google Scholar 

  • Gendreau M, Laporte G, Mesa JA (1995) Locating rapid transit lines. J Adv Transp 29:145–162

    Article  Google Scholar 

  • Gross DRP, Hamacher HW, Horn S, Schöbel A (2009) Stop location design in public transportation networks: covering and accessibility objectives. TOP 17:335–346

    Article  Google Scholar 

  • Guan JF, Yang H, Wirasinghe SC (2006) Simultaneous optimization of transit line configuration and passenger line assignment. Transp Res B Methodol 40:885–902

    Article  Google Scholar 

  • Gutiérrez-Jarpa G, Obreque C, Laporte G, Marianov V (2013) Rapid transit network design for optimal cost and origin-destination demand capture. Comput Oper Res 40:3000–3009

    Article  Google Scholar 

  • Hamacher HW, Liebers A, Schöbel A, Wagner D, Wagner F (2001) Locating new stops in a railway network. ENTCS 50:1–11

    Google Scholar 

  • Institute of Electrical and Electronics Engineers (1990) IEEE Standard Computer Dictionary: a compilation of IEEE standard computer glossaries

    Google Scholar 

  • Kermanshani S, Shafahi Y, Mollanejad M, Zangui M (2010) Rapid transit network design using simulated annealing. In: 12th WCTR, pp 1–15

    Google Scholar 

  • Körner M-C, Mesa JA, Perea F, Schöbel A, Scholz D (2012) A maximum trip covering location problem with an alternative mode transportation on tree networks and segments. TOP 22:227–253

    Article  Google Scholar 

  • Laporte G, Mesa JA, Ortega FA (1997) Assessing the efficiency of rapid transit configurations. TOP 5:95–104

    Article  Google Scholar 

  • Laporte G, Mesa JA, Ortega FA (2002) Locating stations on rapid transit lines. Comput Oper Res 29:741–759

    Article  Google Scholar 

  • Laporte G, Mesa JA, Ortega FA, Sevillano I (2005) Maximizing trip coverage in the location of a single rapid transit alignment. Ann Oper Res 136:49–63

    Article  Google Scholar 

  • Laporte G, Marín A, Mesa JA, Ortega, FA (2007) An integrated methodology for the rapid transit network design problem. In: Geraets F, Kroon L, Schöbel A, Wagner D, Zaroliagis CD (eds) Algorithmic methods for railway optimization (Proceedings of ATMOS 2004). Lecture notes in Computer Science, vol 4359. Springer, Berlin/Heidelberg, pp 187–199

    Chapter  Google Scholar 

  • Laporte G, Mesa JA, Ortega FA, Pozo MA (2009) Locating a metro line in a historical city centre: application to Sevilla. J Oper Res Soc 60:1462–1466

    Article  Google Scholar 

  • Laporte G, Mesa JA, Perea F (2010) A game theoretic framework for the robust railway transit network design problem. Transp Res C Methodol 44:447–459

    Article  Google Scholar 

  • Laporte G, Marín A, Mesa JA, Perea F (2011) Designing robust rapid transit networks with alternative routes. J Adv Trans 45:54–65

    Article  Google Scholar 

  • Latora V, Marchiori M (2001) Efficient behavior of small-world networks. Phys Rev Lett 87:1987011–1987014

    Article  Google Scholar 

  • Latora V, Marchiori M (2002) Is the Boston subway a small-world network? Physica A 314:109–113

    Article  Google Scholar 

  • Marín A (2007) An extension to rapid transit design problem. TOP 15:231–241

    Article  Google Scholar 

  • Marín A, García-Ródenas R (2009) Location of infrastructure in urban railway networks. Comput Oper Res 36:1461–1477

    Article  Google Scholar 

  • Marín A, Jaramillo P (2008) Urban rapid transit network capacity expansion. Eur J Oper Res 191:45–60

    Article  Google Scholar 

  • Marín A, Jaramillo P (2009) Urban rapid transit network design: accelerated Benders decomposition. Ann Oper Res 169:35–53

    Article  Google Scholar 

  • Mesa JA, Boffey B (1996) A review of extensive facility on networks. Eur J Oper Res 95:592–603

    Article  Google Scholar 

  • Mesa JA, Ortega FA (2001) Park-and-ride station catchment areas in metropolitan rapid transit systems. In: Pursula M, Nittmäki J (eds) Mathematical methods on optimization in transportation systems. Kluwer, Dordrecht, pp 81–93

    Chapter  Google Scholar 

  • Metro de Granada (2013) http://www.urbanrail.net/eu/es/granada/granada.htm. Accessed 11 Nov 2013

  • Metro de Lisboa (2014) http://www.metrolisboa.pt/obras/projectos-de-expansao/. Accessed 27 July 2014

  • Musso A, Vuchic VR (1988) Characteristics of metro network and methodology for their evaluation. Transp Res Rec 1162:22–33

    Google Scholar 

  • Rhode M (2014) World Metro Database. http://www.mic-ro.com/metro/table.html. Accessed 30 July 2014

  • Roth C, Kang SM, Batty M, Barthelemy M (2012) A long-time limit for world subway networks. J R Soc Interface 9:2540–2550

    Article  Google Scholar 

  • Schöbel A (2005) Locating stops along bus or railway lines-a bicriteria problem. Ann Oper Res 136:211–227

    Article  Google Scholar 

  • Seaton KA, Hackett LM (2004) Stations, trains and small-world networks. Physica A 339:635–644

    Article  Google Scholar 

  • Sen P, Dasgupta S, Chatterjee A, Sreeran PA, Mukherjee G, Manna SS (2002) Small-world properties of the Indian railway network. arXiv:cond-math/0208535v2 [cond-mat.soft] 31 Dec 2002

    Google Scholar 

  • Sociedad del Metro de Sevilla S.A. (2001) Proyecto general básico de la red de metro de Sevilla y programación de fases (in Spanish), UTE Iberinsa and Ghesa

    Google Scholar 

  • UITP (International Association of Public Transports) (2011) Metro service performance indicators. http://www.uitp.org/publications/corebriefs.cfm

  • Vuchic VR (2005) Urban transit operations, planning and economics. Wiley, Hoboken

    Google Scholar 

  • Vuchic VR, Newell GF (1968) Rapid transit interstation spacings for minimum travel time. Transp Sci 2:303–339

    Article  Google Scholar 

  • Wang J-Y, Lin C-M (2010) Mass transit route network design using genetic algorithm. J Chin Inst Eng 33:301–315

    Article  Google Scholar 

  • Watts DJ, Strogatz SH (1998) The dynamics of ‘small-world’ networks. Nature 393:440–442

    Article  Google Scholar 

  • Wikipedia (2014) http://eu.wikipedia.org/wiki/list-of-metro-systems. Accessed 30 July 2014

  • Zhang J, Zhao M, Liu H, Xu X (2013) Networked characteristics of the urban rail transit networks. Physica A 392:1538–1546

    Article  Google Scholar 

Download references

Acknowledgements

This work was partially supported by the Canadian Natural Sciences and Engineering Research Council under grant 39682-10, by the Ministerio de Economía y Competitividad (Spain)/FEDER under projects MTM2009-14243 and MTM2012-37040, and by Junta de Andalucía (Spain)/FEDER under excellence projects P09-TEP-5022 and FQM-5849.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gilbert Laporte .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Laporte, G., Mesa, J.A. (2015). The Design of Rapid Transit Networks. In: Laporte, G., Nickel, S., Saldanha da Gama, F. (eds) Location Science. Springer, Cham. https://doi.org/10.1007/978-3-319-13111-5_22

Download citation

Publish with us

Policies and ethics