Skip to main content

Conclusions and future outlook

  • Chapter
  • First Online:
Biologics for the Treatment of Rheumatoid Arthritis
  • 1055 Accesses

Abstract

Forty years ago this year George Kohler and Cesar Milstein published an article in Nature describing a method for “continuous cultures of fused cells secreting antibody of predefined specificity” Figure 10.1 [1].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Kohler G, Milstein C. Continuous cultures of fused cells secreting antibody of predefined specificity. Nature. 1975;256:495-497.

    Google Scholar 

  2. Miller RA, Maloney DG, Warnke R, Levy R. Treatment of B-cell lymphoma with monoclonal anti-idiotype antibody. N Engl J Med. 1982;306:517-522.

    Google Scholar 

  3. Martin PJ, Hansen JA, Anasetti C, et al. Treatment of acute graft-versus-host disease with anti-CD3 monoclonal antibodies. Am J Kidney Dis. 1988;11:149-152.

    Google Scholar 

  4. A randomized clinical trial of OKT3 monoclonal antibody for acute rejection of cadaveric renal transplants. Ortho Multicenter Transplant Study Group. N Engl J Med. 1985;313:337-342.

    Google Scholar 

  5. Herzog C, Walker C, Muller W, et al. Anti-CD4 antibody treatment of patients with rheumatoid arthritis: I. Effect on clinical course and circulating T cells. J Autoimmun. 1989;2:627-642.

    Google Scholar 

  6. Elliott MJ, Maini RN, Feldmann M, et al. Treatment of rheumatoid arthritis with chimeric monoclonal antibodies to tumor necrosis factor alpha. Arthritis Rheum. 1993;36:1681-1690.

    Google Scholar 

  7. Conti P, Reale M, Barbacane RC, et al. Reduced mitogen stimulation of DNA synthesis in human lymphocytes by a human recombinant interleukin-1 receptor antagonist. Immunol Lett. 1991;28:19-25.

    Google Scholar 

  8. Fischer JA, Hueber AJ, Wilson S, et al. Combined inhibition of tumor necrosis factor alpha and interleukin-17 as a therapeutic opportunity in rheumatoid arthritis: development and characterization of a novel bispecific antibody. Arthritis Rheumatol. 2015;67:51-62.

    Google Scholar 

  9. Burkovitz A, Leiderman O, Sela-Culang I, et al. Computational identification of antigen-binding antibody fragments. J Immunol. 2013;190:2327-2334.

    Google Scholar 

  10. Kondo M, Yamaoka K, Tanaka Y. Acquiring chondrocyte phenotype from human mesenchymal stem cells under inflammatory conditions. Int J Mol Sci. 2014;15:21270-21285.

    Google Scholar 

  11. Schminke B, Miosge N. Cartilage repair in vivo: the role of migratory progenitor cells. Curr Rheumatol Rep. 2014;16:461.

    Google Scholar 

  12. Ringe J, Burmester GR, Sittinger M. Regenerative medicine in rheumatic disease-progress in tissue engineering. Nat Rev Rheumatol. 2012;8:493-498.

    Google Scholar 

  13. Paul C, Reich K, Gottlieb AB, et al. Secukinumab improves hand, foot and nail lesions in moderate-to-severe plaque psoriasis: subanalysis of a randomized, double-blind, placebo-controlled, regimen-finding phase 2 trial. J Eur Acad Dermatol Venereol. 2014;28:1670-1675.

    Google Scholar 

  14. Gordon KB, Leonardi CL, Lebwohl M, et al. A 52-week, open-label study of the efficacy and safety of ixekizumab, an anti-interleukin-17A monoclonal antibody, in patients with chronic plaque psoriasis. J Am Acad Dermatol. 2014;71:1176-1182.

    Google Scholar 

  15. Leonardi C, Matheson R, Zachariae C, et al. Anti-interleukin-17 monoclonal antibody ixekizumab in chronic plaque psoriasis. N Engl J Med. 2012;366:1190-1199.

    Google Scholar 

  16. Wu JJ. Anti-interleukin-17 monoclonal antibody ixekizumab in psoriasis. N Engl J Med. 2012;367:274-275.

    Google Scholar 

  17. Genovese MC, Greenwald M, Cho CS, et al. A phase II randomized study of subcutaneous ixekizumab, an anti-interleukin-17 monoclonal antibody, in rheumatoid arthritis patients who were naive to biologic agents or had an inadequate response to tumor necrosis factor inhibitors. Arthritis Rheumatol. 2014;66:1693-1704.

    Google Scholar 

  18. McInnes IB, Sieper J, Braun J, et al. Efficacy and safety of secukinumab, a fully human anti-interleukin-17A monoclonal antibody, in patients with moderate-to-severe psoriatic arthritis: a 24-week, randomised, double-blind, placebo-controlled, phase II proof-of-concept trial. Ann Rheum Dis. 2014;73:349-356.

    Google Scholar 

  19. Mease PJ, Genovese MC, Greenwald MW, et al. Brodalumab, an anti-IL17RA monoclonal antibody, in psoriatic arthritis. N Engl J Med. 2014;370:2295-2306.

    Google Scholar 

  20. Baeten D, Baraliakos X, Braun J, et al. Anti-interleukin-17A monoclonal antibody secukinumab in treatment of ankylosing spondylitis: a randomised, double-blind, placebo-controlled trial. Lancet. 2013;382:1705-1713.

    Google Scholar 

  21. Burmester GR, Feist E, Sleeman MA, et al. Mavrilimumab, a human monoclonal antibody targeting GM-CSF receptor-alpha, in subjects with rheumatoid arthritis: a randomised, double-blind, placebo-controlled, phase I, first-in-human study. Ann Rheum Dis. 2011;70:1542-1549.

    Google Scholar 

  22. Eastwood D, Bird C, Dilger P, et al. Severity of the TGN1412 trial disaster cytokine storm correlated with IL-2 release. Br J Clin Pharmacol. 2013;76:299-315.

    Google Scholar 

  23. Helling B, Konig M, Dalken B, et al. A specific CD4 epitope bound by tregalizumab mediates activation of regulatory T cells by a unique signaling pathway. Immunol Cell Biol. 2014 [Epub ahead of publication]; doi: 10.1038/icb.2014.102.

    Google Scholar 

  24. Biotest. Dose-finding of multiple dose of BT061 in patients with active rheumatoid arthritis incompletely controlled on stable methotrexate (MTX). https://clinicaltrials.gov/ct2/show/NCT01481493. Accessed October 12, 2015.

  25. Abbvie. Study to investigate the safety and efficacy of tregalizumab in subjects (MTX-IR) with active rheumatoid arthritis (986). https://clinicaltrials.gov/ct2/show/NCT01999192?term=NCT01999192&rank=1. Accessed October 12, 2015.

  26. Uherek C, Engling A, Dalken B, et al. The novel regulatory T cell (Treg) agonistic monoclonal antibody (mAb) tregalizumab (BT-061): further characterization of mechanism of action, epitope binding, and clinical effects in patients with rheumatoid arthritis. IBC Life Sciences 2011. http://www.biotest.de/shared/data/pdf/biotherapeutics/ibc_2011.pdf. Accessed October 12, 2015.

  27. Tracey KJ. The inflammatory reflex. Nature. 2002;420:853-859.

    Google Scholar 

  28. Oke SL, Tracey KJ. From CNI-1493 to the immunological homunculus: physiology of the inflammatory reflex. J Leukoc Biol. 2008;83:512-517.

    Google Scholar 

  29. Olofsson PS, Katz DA, Rosas-Ballina M, et al. alpha7 nicotinic acetylcholine receptor (alpha7nAChR) expression in bone marrow-derived non-T cells is required for the inflammatory reflex. Mol Med. 2012;18:539-543.

    Google Scholar 

  30. Pavlov VA, Tracey KJ. The vagus nerve and the inflammatory reflex--linking immunity and metabolism. Nat Rev Endocrinol. 2012;8:743-754.

    Google Scholar 

  31. SetPoint Medical Corporation. Safety and efficacy vagal nerve stimulation in patients with rheumatoid arthritis. https://clinicaltrials.gov/ct2/show/NCT01552941?term=NCT01552941&rank=1. Accessed October 12, 2015.

  32. Djouad F, Bouffi C, Ghannam S,et al. Mesenchymal stem cells: innovative therapeutic tools for rheumatic diseases. Nat Rev Rheumatol. 2009;5:392-399.

    Google Scholar 

  33. Grigor C, Capell H, Stirling A, et al. Effect of a treatment strategy of tight control for rheumatoid arthritis (the TICORA study): a single-blind randomised controlled trial. Lancet. 2004;364:263-269.

    Google Scholar 

  34. Verstappen SM, Jacobs JW, van der Veen MJ, et al. Intensive treatment with methotrexate in early rheumatoid arthritis: aiming for remission. Computer Assisted Management in Early Rheumatoid Arthritis (CAMERA, an open-label strategy trial). Ann Rheum Dis. 2007;66:1443-1449.

    Google Scholar 

  35. Smolen JS, Aletaha D, Bijlsma JW, et al. Treating rheumatoid arthritis to target: recommendations of an international task force. Ann Rheum Dis. 2010;69:631-637.

    Google Scholar 

  36. Smolen JS, Braun J, Dougados M, et al. Treating spondyloarthritis, including ankylosing spondylitis and psoriatic arthritis, to target: recommendations of an international task force. Ann Rheum Dis. 2014;73:6-16.

    Google Scholar 

  37. van Vollenhoven RF, Mosca M, Bertsias G, et al. Treat-to-target in systemic lupus erythematosus: recommendations from an international task force. Ann Rheum Dis. 2014;73:958-967.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ronald F. van Vollenhoven .

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

van Vollenhoven, R.F. (2016). Conclusions and future outlook. In: Biologics for the Treatment of Rheumatoid Arthritis. Adis, Cham. https://doi.org/10.1007/978-3-319-13108-5_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-13108-5_10

  • Published:

  • Publisher Name: Adis, Cham

  • Print ISBN: 978-3-319-13107-8

  • Online ISBN: 978-3-319-13108-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics