Skip to main content

An Efficient Algorithm for Shakedown Analysis Based on Equality Constrained Sequential Quadratic Programming

  • Chapter
  • First Online:
Direct Methods for Limit and Shakedown Analysis of Structures

Abstract

A new iterative algorithm to evaluate the elastic shakedown multiplier is proposed. On the basis of a three field mixed finite element, a series of mathematical programming problems or steps, obtained from the application of the proximal point algorithm to the static shakedown theorem, are obtained. Each step is solved by an Equality Constrained Sequential Quadratic Programming (EC-SQP) technique that retain all the equations and variables of the problem at the same level so allowing a consistent linearization that improves the computational efficiency. The numerical tests performed for 2D problems show the good performance and the great robustness of the proposed algorithm.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bilotta A, Casciaro R (2002) Assumed stress formulation of high order quadrilateral elements with an improved in-plane bending behaviour. Comput Methods Appl Mech Eng 191(15–16):1523–1540

    Article  MATH  Google Scholar 

  2. Bilotta A, Casciaro R (2007) A high-performance element for the analysis of 2d elastoplastic continua. Comput Methods Appl Mech Eng 196(4–6):818–828

    Article  MATH  Google Scholar 

  3. Bilotta A, Leonetti L, Garcea G (2011) Three field finite elements for the elastoplastic analysis of 2D continua. Finite Elem Anal Des 47(10):1119–1130

    Article  MathSciNet  Google Scholar 

  4. Bilotta A, Leonetti L, Garcea G (2012) An algorithm for incremental elastoplastic analysis using equality constrained sequential quadratic programming. Comput Struct 102–103:97–107

    Article  Google Scholar 

  5. Bisbos CD, Makrodimopoulos A, Pardalos PM (2005) Second-order cone programming approaches to static shakedown analysis in steel plasticity. Optim Methods Softw 20(1):25–52

    Article  MATH  MathSciNet  Google Scholar 

  6. Bouby C, De Saxcé G, Tritsch J-B (2006) A comparison between analytical calculations of the shakedown load by the bipotential approach and step-by-step computations for elastoplastic materials with nonlinear kinematic hardening. Int J Solids Struct 43(9):2670–2692

    Article  MATH  Google Scholar 

  7. Casciaro R, Garcea G (2002) An iterative method for shakedown analysis. Comput Methods Appl Mech Eng 191(49–50):5761–5792

    Article  MATH  Google Scholar 

  8. Chen HF, Ponter ARS (2001) Shakedown and limit analyses for 3-d structures using the linear matching method. Int J Press Vessel Pip 78(6):443–451

    Article  Google Scholar 

  9. Garcea G, Leonetti L (2011) A unified mathematical programming formulation of strain driven and interior point algorithms for shakedown and limit analysis. Int J Numer Methods Eng 88:1085–1111

    Article  MATH  MathSciNet  Google Scholar 

  10. Garcea G, Trunfio GA, Casciaro R (1998) Mixed formulation and locking in path-following nonlinear analysis. Comput Methods Appl Mech Eng 165(1–4):247–272

    Article  MATH  MathSciNet  Google Scholar 

  11. Garcea G, Armentano G, Petrolo S, Casciaro R (2005) Finite element shakedown analysis of two-dimensional structures. Int J Numer Methods Eng 63(8):1174–1202

    Article  MATH  Google Scholar 

  12. Krabbenhoft K, Damkilde L (2003) A general non-linear optimization algorithm for lower bound limit analysis. Comput Methods Appl Mech Eng 56(2):165–184

    MATH  Google Scholar 

  13. Krabbenhoft K, Lyamin AV, Sloan SW, Wriggers P (2007) An interior-point algorithm for elastoplasticity. Int J Numer Methods Eng 69(3):592–626

    Article  MATH  MathSciNet  Google Scholar 

  14. Ngo NS, Tin-Loi F (2007) Shakedown analysis using the p-adaptive finite element method and linear programming. Eng Struct 29(1):46–56

    Article  Google Scholar 

  15. Nocedal J, Wright SJ (2000) Numerical optimization. Springer, New York

    Google Scholar 

  16. Pastor J, Thai TH, Francescato P (2003) Interior point optimization and limit analysis: an application. Commun Numer Methods Eng 19(10):779–785

    Article  MATH  Google Scholar 

  17. Ponter ARS, Carter KF (1997) Shakedown state simulation techniques based on linear elastic solutions. Comput Methods Appl Mech Eng 140(3–4):259–279

    Article  MATH  MathSciNet  Google Scholar 

  18. Simó JC, Hughes TJR (1998) Computational inelasticity mechanics and materials. Interdisciplinary applied mathematics. Springer, Berlin

    Google Scholar 

  19. Simon J-W, Weichert D (2011) Numerical lower bound shakedown analysis of engineering structures. Comput Methods Appl Mech Eng 200(41–44):2828–2839

    Article  MATH  MathSciNet  Google Scholar 

  20. Simon J-W, Weichert D (2012) Shakedown analysis of engineering structures with limited kinematical hardening. Int J Solids Struct 49(15–16):2177–2186

    Article  MathSciNet  Google Scholar 

  21. Simon J-W, Weichert D (2011) Numerical lower bound shakedown analysis of engineering structures. Comput Methods Appl Mech Eng 200(41–44):2828–2839

    Article  MATH  MathSciNet  Google Scholar 

  22. Simon J-W, Kreimeier M, Weichert D (2013) A selective strategy for shakedown analysis of engineering structures. Int J Numer Methods Eng 94:985–1014

    Article  MathSciNet  Google Scholar 

  23. Spiliopoulos KV, Panagiotou KD (2012) A direct method to predict cyclic steady states of elastoplastic structures. Comput Methods Appl Mech Eng 223–224:186–198

    Article  MathSciNet  Google Scholar 

  24. Tran TN, Liu GR, Nguyen-Xuan H, Nguyen-Thoi T (2010) An edge-based smoothed finite element method for primal-dual shakedown analysis of structures. Int J Numer Methods Eng 82(7):917–938

    MATH  MathSciNet  Google Scholar 

  25. Vu DK, Yan AM, Nguyen-Dang H (2004) A primal-dual algorithm for shakedown analysis of structures. Comput Methods Appl Mech Eng 193(42–44):4663–4674

    Article  MATH  Google Scholar 

Download references

Acknowledgments

The research leading to these results has received regional funding from the European Communitys Seventh Framework Programme FP7-FESR: “PIA Pacchetti Integrati di Agevolazione industria, artigianato e servizi” in collaboration with the Newsoft s.a.s. (www.newsoft-eng.it).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giovanni Garcea .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Garcea, G., Bilotta, A., Leonetti, L. (2015). An Efficient Algorithm for Shakedown Analysis Based on Equality Constrained Sequential Quadratic Programming. In: Fuschi, P., Pisano, A., Weichert, D. (eds) Direct Methods for Limit and Shakedown Analysis of Structures. Springer, Cham. https://doi.org/10.1007/978-3-319-12928-0_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-12928-0_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-12927-3

  • Online ISBN: 978-3-319-12928-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics