Skip to main content

Decoding the Transcriptome of Neuronal Circuits

  • Chapter
  • First Online:
New Techniques in Systems Neuroscience

Part of the book series: Biological and Medical Physics, Biomedical Engineering ((BIOMEDICAL))

  • 1690 Accesses

Abstract

Genomics is fostering broad discoveries across biological disciplines, including the neurosciences. However, the analysis of gene expression and gene regulation in the brain is complicated by the extraordinary cellular heterogeneity, complex connectivity, and dynamic physiology of the tissue. Indeed, one of the great challenges of modern neuroscience involves the functional and molecular classification of cells in the brain within the context of network connectivity. In parallel, a major area of focus in the field of genomics involves the development of technologies that can profile the transcriptome of single or small numbers of cells [38]. Thus, major objectives in these two fields are well aligned. Here, we review modern approaches for the analysis of gene expression at the cellular level in the brain. As detailed below, these new technologies involve both ex vivo genomics approaches and new and emerging technologies for in situ and in vivo imaging of molecules in the brain.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Adiconis, X., et al. (2013). Comparative analysis of RNA sequencing methods for degraded or low-input samples. Nature Methods, 10(7), 623–629.

    Article  Google Scholar 

  2. Arlotta, P., et al. (2005). Neuronal subtype-specific genes that control corticospinal motor neuron development in vivo. Neuron, 45(2), 207–221.

    Article  Google Scholar 

  3. Atasoy, D., et al. (2012). Deconstruction of a neural circuit for hunger. Nature, 488(7410), 172–177.

    Article  ADS  Google Scholar 

  4. Bordeaux, J. M., et al. (2012). Quantitative in situ measurement of estrogen receptor mRNA predicts response to tamoxifen. (G. E. Woloschak, ed.) PloS One, 7(5), e36559.

    Article  ADS  Google Scholar 

  5. Branton, D., et al. (2008). The potential and challenges of nanopore sequencing. Nature Biotechnology, 26(10), 1146–1153.

    Article  Google Scholar 

  6. Cahoy, J. D., et al. (2008). A transcriptome database for astrocytes, neurons, and oligodendrocytes: A new resource for understanding brain development and function. The Journal of Neuroscience, 28(1), 264–278.

    Article  Google Scholar 

  7. Cajigas, I. J., et al. (2012). The local transcriptome in the synaptic neuropil revealed by deep sequencing and high-resolution imaging. Neuron, 74(3), 453–466.

    Article  Google Scholar 

  8. Callaway, E. M. (2008). Transneuronal circuit tracing with neurotropic viruses. Current Opinion in Neurobiology, 18(6), 617–623.

    Article  Google Scholar 

  9. Camp, R. L., Chung, G. G., & Rimm, D. L. (2002). Automated subcellular localization and quantification of protein expression in tissue microarrays. Nature Medicine, 8(11), 1323–1328.

    Article  Google Scholar 

  10. Cao, V. Y., et al. (2013). In vivo two-photon imaging of experience-dependent molecular changes in cortical neurons. Journal of Visualized Experiments, (71), e50148, doi:10.3791/50148.

    Google Scholar 

  11. Chiu, I. M., et al. (2013). A neurodegeneration-specific gene-expression signature of acutely isolated microglia from an amyotrophic lateral sclerosis mouse model. CellReports, 4(2), 385–401.

    Google Scholar 

  12. Dafforn, A., et al. (2004). Linear mRNA amplification from as little as 5 ng total RNA for global gene expression analysis. BioTechniques, 37(5), 854–857.

    Google Scholar 

  13. de Hoon, M., & Hayashizaki, Y. (2008). Deep cap analysis gene expression (CAGE): Genome-wide identification of promoters, quantification of their expression, and network inference. BioTechniques 44(5), 627–632.

    Google Scholar 

  14. de Klerk, E., Dunnen, den, J. T. & t Hoen, P. A. C. (2014). RNA sequencing: From tag-based profiling to resolving complete transcript structure. Cellular and Molecular Life Sciences, 71(18), 3537–3551.

    Google Scholar 

  15. Djebali, S., et al. (2012). Landscape of transcription in human cells. Nature, 489(7414), 101–108.

    Article  ADS  Google Scholar 

  16. Doyle, J. P., et al. (2008). Application of a translational profiling approach for the comparative analysis of CNS cell types. Cell, 135(4), 749–762.

    Article  Google Scholar 

  17. Draper, S., et al. (2010). Differential gene expression between neuropeptide Y expressing neurons of the dorsomedial nucleus of the hypothalamus and the arcuate nucleus: Microarray analysis study. Brain Research, 1350(C), 139–150.

    Article  Google Scholar 

  18. Dulac, C., & Axel, R. (1995). A novel family of genes encoding putative pheromone receptors in mammals. Cell, 83(2), 195–206.

    Article  Google Scholar 

  19. Eberwine, J., et al. (1992). Analysis of gene expression in single live neurons. Proceedings of the National Academy of Sciences, 89(7), 3010–3014.

    Article  ADS  Google Scholar 

  20. Eid, J., et al. (2009). Real-time DNA sequencing from single polymerase molecules. Science, 323(5910), 133–138.

    Article  ADS  Google Scholar 

  21. Femino, A. M., et al. (1998). Visualization of single RNA transcripts in situ. Science, 280(5363), 585–590.

    Article  ADS  Google Scholar 

  22. Fu, G. K., et al. (2014). Molecular indexing enables quantitative targeted RNA sequencing and reveals poor efficiencies in standard library preparations. Proceedings of the National Academy of Sciences, 111(5), 1891–1896.

    Article  ADS  Google Scholar 

  23. Gallie, D. R. (1998). A tale of two termini. Gene, 216(1), 1–11.

    Article  Google Scholar 

  24. Gay, L., et al. (2013). Mouse TU tagging: A chemical/genetic intersectional method for purifying cell type-specific nascent RNA. Genes & Development, 27(1), 98–115.

    Article  Google Scholar 

  25. GENSAT. (2014). The gene expression nervous system atlas (GENSAT) project. New York: NINDS Contracts N01NS02331 & HHSN271200723701 C to The Rockefeller University. gensat.org. http://www.gensat.org/index.html. Accessed 27 Aug 2014.

  26. Grison, A., et al. (2014). Mesencephalic dopaminergic neurons express a repertoire of olfactory receptors and respond to odorant-like molecules. BMC Genomics, 15(1), 729.

    Article  Google Scholar 

  27. Hashimshony, T., et al. (2012). CEL-seq: Single-cell RNA-seq by multiplexed linear amplification. CellReports, 2(3), 666–673.

    Google Scholar 

  28. Heiman, M., et al. (2008). A translational profiling approach for the molecular characterization of CNS cell types. Cell, 135(4), 738–748.

    Article  Google Scholar 

  29. Hempel, C. M., Sugino, K., & Nelson, S. B. (2007). A manual method for the purification of fluorescently labeled neurons from the mammalian brain. Nature Protocols, 2(11), 2924–2929.

    Article  Google Scholar 

  30. Holt, C. E., & Schuman, E. M. (2013). The central dogma decentralized: New perspectives on RNA function and local translation in neurons. Neuron, 80(3), 648–657.

    Article  Google Scholar 

  31. Islam, S., et al. (2011). Characterization of the single-cell transcriptional landscape by highly multiplex RNA-seq. Genome Research, 21(7), 1160–1167.

    Article  Google Scholar 

  32. Jiang, H. & Wong, W. H., (2009). Statistical inferences for isoform expression in RNA-Seq. Bioinformatics, 25(8), 1026–1032.

    Article  Google Scholar 

  33. Kang, H. J. et al. (2011). Spatio-temporal transcriptome of the human brain. Nature, 478(7370), 483–489.

    Article  ADS  Google Scholar 

  34. Knight, Z. A. et al. (2012). Molecular profiling of activated neurons by phosphorylated Ribosome capture. Cell, 151(5), 1126–1137.

    Article  Google Scholar 

  35. Krashes, M. J. et al. (2014). An excitatory paraventricular nucleus to AgRP neuron circuit that drives hunger. Nature, 507(7491), 238–242.

    Article  ADS  Google Scholar 

  36. Kunitomo, H. et al. (2005). Identification of ciliated sensory neuron-expressed genes in Caenorhabditis elegans using targeted pull-down of poly(A) tails. Genome biology, 6(2), R17.

    Article  Google Scholar 

  37. Kurn, N. et al. (2005). Novel isothermal, linear nucleic acid amplification systems for highly multiplexed applications. Clinical Chemistry, 51(10), 1973–1981.

    Google Scholar 

  38. Lasken, R. S. (2013). Single-cell sequencing in its prime. Nature Biotechnology, 31(3), 211–212.

    Google Scholar 

  39. Laszlo, A. H. et al. (2014). Decoding long nanopore sequencing reads of natural DNA. Nature biotechnology, 32(8), 829–833.

    Google Scholar 

  40. Lee, J. H. et al. (2014). Highly multiplexed subcellular RNA sequencing in situ. Science, 343(6177), 1360–1363.

    Article  ADS  Google Scholar 

  41. Levin, J. Z. et al. (2010). Comprehensive comparative analysis of strand-specific RNA sequencing methods. Nature methods, 7(9), 709–715.

    Article  Google Scholar 

  42. Liu, C.-Q. et al. (2010). A quantitative in situ hybridization protocol for formalin-fixed paraffin-embedded archival post-mortem human brain tissue. Methods, 52(4), 359–366.

    Article  Google Scholar 

  43. Lo, L. & Anderson, D. J. (2011). A Cre-dependent, anterograde transsynaptic viral tracer for mapping output pathways of genetically marked neurons. Neuron, 72(6), 938–950.

    Article  Google Scholar 

  44. Lobo, M. K. et al. (2006). FACS-array profiling of striatal projection neuron subtypes in juvenile and adult mouse brains. Nature Neuroscience, 9(3), 443–452.

    Article  Google Scholar 

  45. Luo, L. et al. (1999). Gene expression profiles of laser-captured adjacent neuronal subtypes. Nature Medicine, 5(1), 117–122.

    Article  Google Scholar 

  46. Madisen, L. et al. (2010). A robust and high-throughput Cre reporting and characterization system for the whole mouse brain. Nature Neuroscience, 13(1), 133–140.

    Article  Google Scholar 

  47. Maret, S. et al. (2007). Homer1a is a core brain molecular correlate of sleep loss. Proceedings of the National Academy of Sciences of the United States of America, 104(50), 20090–20095.

    Article  ADS  Google Scholar 

  48. Martin, K. C. & Zukin, R. S. (2006). RNA trafficking and local protein synthesis in dendrites: An overview. The Journal of Neuroscience, 26(27), 7131–7134.

    Article  Google Scholar 

  49. Miller, M. R. et al. (2009). TU-tagging: Cell type-specific RNA isolation from intact complex tissues. Nature Methods, 6(6), 439–441.

    Article  Google Scholar 

  50. Miller, J. A. et al. (2014). Transcriptional landscape of the prenatal human brain. Nature, 508(7495), 199–206.

    Article  ADS  Google Scholar 

  51. Muzumdar, M. D. et al. (2007). A global double-fluorescent Cre reporter mouse. Genesis, 45(9), 593–605.

    Article  Google Scholar 

  52. Nelson, S. B., Sugino, K. & Hempel, C. M. (2006). The problem of neuronal cell types: A physiological genomics approach. Trends in Neurosciences, 29(6), 339–345.

    Article  Google Scholar 

  53. Niwa, H., Yamamura, K. & Miyazaki, J. (1991). Efficient selection for high-expression transfectants with a novel eukaryotic vector. Gene, 108(2), 193–199.

    Article  Google Scholar 

  54. Oh, S.W. et al. (2014). A mesoscale connectome of the mouse brain. Nature, 508(7495), 207–214.

    Article  ADS  Google Scholar 

  55. Okaty, B. W., Sugino, K. & Nelson, S. B. (2011a). A quantitative comparison of cell-type-specific microarray gene expression profiling methods in the mouse brain J. Kelso, ed. PloS ONE, 6(1), e16493.

    Article  ADS  Google Scholar 

  56. Okaty, B. W., Sugino, K. & Nelson, S. B. (2011b). Cell type-specific transcriptomics in the brain. The Journal of Neuroscience, 31(19), 6939–6943.

    Article  Google Scholar 

  57. Osakada, F. et al. (2011). New rabies virus variants for monitoring and manipulating activity and gene expression in defined neural circuits. Neuron, 71(4), 617–631.

    Article  Google Scholar 

  58. O’Shea & Gundlach (1994). In situ hybridization protocols for the brain. In Wisden and Morris, eds. New York: Academic.

    Google Scholar 

  59. Ozsolak, F. & Milos, P. M., (2011). RNA sequencing: Advances, challenges and opportunities. Nature Reviews. Genetics, 12(2), 87–98.

    Article  Google Scholar 

  60. Ozsolak, F. et al. (2009). Direct RNA sequencing. Nature, 461(7265), 814–818.

    Article  ADS  Google Scholar 

  61. Qiu, S. et al. (2012). Single-neuron RNA-Seq: Technical feasibility and reproducibility. Frontiers in Genetics, 3, 1–8.

    Article  Google Scholar 

  62. Raj, A. et al. (2008). Imaging individual mRNA molecules using multiple singly labeled probes. Nature Methods, 5(10), 877–879.

    Article  Google Scholar 

  63. Ramirez, S. et al. (2013). Creating a false memory in the hippocampus. Science, 341(6144), 387–391.

    Article  ADS  Google Scholar 

  64. Ramsköld, D. et al. (2012). Full-length mRNA-Seq from single-cell levels of RNA and individual circulating tumor cells. Nature Publishing Group, 30(8), 777–782.

    Google Scholar 

  65. Ren, M. et al. (2014). Arc regulates experience-dependent persistent firing patterns in frontal cortex. The Journal of Neuroscience, 34(19), 6583–6595.

    Article  Google Scholar 

  66. Rossner, M. J. et al. (2006). Global transcriptome analysis of genetically identified neurons in the adult cortex. The Journal of Neuroscience, 26(39), 9956–9966.

    Article  Google Scholar 

  67. Roy, P. J. et al. (2002). Chromosomal clustering of muscle-expressed genes in Caenorhabditis elegans. Nature, 418(6901), 975–979.

    ADS  Google Scholar 

  68. Sanz, E. et al. (2009). Cell-type-specific isolation of ribosome-associated mRNA from complex tissues. Proceedings of the National Academy of Sciences, 106(33), 13939–13944.

    Article  ADS  Google Scholar 

  69. Sasagawa, Y. et al. (2013). Quartz-Seq: A highly reproducible and sensitive single-cell RNA sequencing method, reveals non-genetic gene-expression heterogeneity. Genome Biology, 14(4), R31.

    Google Scholar 

  70. Schmidt, W. M. & Mueller, M. W. (1999). CapSelect: A highly sensitive method for 5′ CAP-dependent enrichment of full-length cDNA in PCR-mediated analysis of mRNAs. Nucleic Acids Research, 27(21), e31.

    Article  Google Scholar 

  71. Shah, N. M. et al. (2004). Visualizing Sexual Dimorphism in the Brain. Neuron, 43(3), 313–319.

    Article  Google Scholar 

  72. Shapiro, E., Biezuner, T. & Linnarsson, S., (2013). Single-cell sequencing-based technologies will revolutionize whole-organism science. Nature Reviews Genetics, 14(9), 618–630.

    Article  Google Scholar 

  73. Sharon, D. et al. (2013). A single-molecule long-read survey of the human transcriptome. Nature Biotechnology, 31(11), 1009–1014.

    Google Scholar 

  74. Shepard, P. J. et al. (2011). Complex and dynamic landscape of RNA polyadenylation revealed by PAS-Seq. RNA, 17(4), 761–772.

    Article  Google Scholar 

  75. Shiraki, T. et al. (2003). Cap analysis gene expression for high-throughput analysis of transcriptional starting point and identification of promoter usage. Proceedings of the National Academy of Sciences, 100(26), 15776–15781.

    Article  ADS  Google Scholar 

  76. Sugino, K. et al. (2005). Molecular taxonomy of major neuronal classes in the adult mouse forebrain. Nature Neuroscience, 9(1), 99–107.

    Article  Google Scholar 

  77. Tang, F. et al. (2009). mRNA-Seq whole-transcriptome analysis of a single cell. Nature Methods, 6(5), 377–382.

    Article  Google Scholar 

  78. Tang, F. et al. (2010). RNA-Seq analysis to capture the transcriptome landscape of a single cell. Nature Protocols, 5(3), 516–535.

    Article  Google Scholar 

  79. Tang, F. et al. (2011). Deterministic and Stochastic Allele Specific Gene Expression in Single Mouse Blastomeres M. Pesce, ed. PloS ONE, 6(6), e21208.

    Article  ADS  Google Scholar 

  80. Taylor, P. (2013). Analytical and preparative instrumentation. Journal of Biomolecular Screening, 18(1), 143–145.

    Article  Google Scholar 

  81. Tilgner, H. et al. (2014). Defining a personal, allele-specific, and single-molecule long-read transcriptome. Proceedings of the National Academy, 111(27), 9869–9874.

    Article  ADS  Google Scholar 

  82. Tong, Q. et al. (2008). Synaptic release of GABA by AgRP neurons is required for normal regulation of energy balance. Nature Neuroscience, 11(9), 998–1000.

    Article  Google Scholar 

  83. Trcek, T. et al. (2012). Single-mRNA counting using fluorescent in situ hybridization in budding yeast. Nature Protocols, 7(2), 408–419.

    Article  Google Scholar 

  84. Tung, J.W. et al. (2007). Modern flow cytometry: A practical approach. Clinics in Laboratory Medicine, 27(3), 453-68-v.

    Google Scholar 

  85. van den Pol, A. N. et al. (2009). Neuromedin B and gastrin-releasing peptide excite arcuate nucleus neuropeptide Y neurons in a novel transgenic mouse expressing strong Renilla green fluorescent protein in NPY neurons. The Journal of Neuroscience, 29(14), 4622–4639.

    Article  Google Scholar 

  86. Van Gelder, R. N., et al. (1990). Amplified RNA synthesized from limited quantities of heterogeneous cDNA. Proceedings of the National Academy of Sciences, 87(5), 1663–1667.

    Article  ADS  Google Scholar 

  87. Velculescu, V. E. et al. (1995). Serial analysis of gene expression. Science, 270(5235), 484–487.

    Article  ADS  Google Scholar 

  88. Wang, L. & Yi, R. (2014). 3′UTRs take a long shot in the brain. BioEssays 36(1), 39–45.

    Article  Google Scholar 

  89. Wang, K.H. et al. (2006). In vivo two-photon imaging reveals a role of arc in enhancing orientation specificity in visual cortex. Cell, 126(2), 389–402.

    Article  Google Scholar 

  90. Wang, F. et al. (2012). RNAscope: A novel in situ RNA analysis platform for formalin-fixed, paraffin-embedded tissues. The Journal of Molecular Diagnostics: JMD, 14(1), 22–29.

    Article  Google Scholar 

  91. Wu, A. R. et al. (2013). Quantitative assessment of single-cell RNA-sequencing methods. Nature Methods, 11(1), 41-46.

    Google Scholar 

  92. Yang, Z., Edenberg, H. J. & Davis, R. L., (2005). Isolation of mRNA from specific tissues of Drosophila by mRNA tagging. Nucleic Acids Research, 33(17), e148-e148.

    Google Scholar 

  93. Zingg, B. et al. (2014). Neural networks of the mouse neocortex. Cell, 156(5), 1096–1111.

    Article  Google Scholar 

  94. Zong, H. et al. (2005). Mosaic analysis with double markers in mice. Cell, 121(3), 479–492.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paul J. Bonthuis .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Bonthuis, P., Gregg, C. (2015). Decoding the Transcriptome of Neuronal Circuits. In: Douglass, A. (eds) New Techniques in Systems Neuroscience. Biological and Medical Physics, Biomedical Engineering. Springer, Cham. https://doi.org/10.1007/978-3-319-12913-6_2

Download citation

Publish with us

Policies and ethics