Skip to main content

Denitrifying Bacteria: Physiological Response to Hydrocarbons

  • Chapter
  • First Online:
Bioprospects of Coastal Eubacteria

Abstract

Petroleum pollution has short-term and long-term deleterious effects on the vulnerable marine ecosystem, including deep-sea, coastal and estuarine systems and is evidently a global concern. Various approaches involving biodegradation of hydrocarbons by natural populations of microorganisms are being employed to counteract petroleum contamination. Denitrifying bacteria are ubiquitous, heterotrophic and capable of breaking down a wide range of aliphatic, aromatic and polycyclic hydrocarbons. Their unique flexibility to switch between aerobic and anaerobic respiration can be efficiently capitalized upon in the bioremediation of hydrocarbons.

The coastal/estuarine systems of the Mandovi and Zuari estuaries in Goa harbour a prolific population of hydrocarbon-utilizing denitrifying bacteria attributed to the influx of nutrients, including nitrate and hydrocarbons. Studies on two potential isolates TSB.MJ10 and TMR2.13, isolated from mangrove and sand dune sediments of Goa and identified as Pseudomonas nitroreducens and Pseudomonas aeruginosa, respectively, elucidate the various adaptive mechanisms undertaken by denitrifying bacteria in response to hydrocarbons. Hydrocarbons have a prominent influence on the important physiological processes, including growth, morphology and denitrification. Denitrifying bacteria produce various extracellular metabolites like pigments, biosurfactants and bioemulsifiers to facilitate their growth and metabolism in the presence of these hydrocarbon pollutants. These mechanisms can be critically analysed for developing effective strategies for bioremediation of hydrocarbons.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Anyanwu, C. U., Obi, S. K. C., & Okolo, B. N. (2011). Lipopeptide biosurfactant production by Serratia marcescens NSK-1 strain isolated from petroleum-contaminated soil. Journal of Applied Sciences Research, 7, 79–87.

    Google Scholar 

  • Anzai, Y., Kudo, Y., & Oyaizu, H. (1997). The phylogeny of the genera Chryseomonas, Flavimonas and Pseudomonas supports synonymy of these genera. International Journal of Systematic Bacteriology, 47, 249–251.

    Article  Google Scholar 

  • Bae, H., Im, W., Suwa, Y., Lee, J. M., Lee, S., & Chang, Y. (2009). Characterization of diverse heterocyclic amine degrading denitrifying bacteria from various environments. Archives of Microbiology, 191, 329–340.

    Article  Google Scholar 

  • Basu, A., & Phale, P. S. (2008). Conjugative transfer of preferential utilization of aromatic compounds from Pseudomonas putida CSV86. Biodegradation, 19, 83–92.

    Article  Google Scholar 

  • Basu, A., Apte, S. K., & Phale, P. S. (2006). Preferential utilization of aromatic compounds over glucose by Pseudomonas putida CSV86. Applied and Environmental Microbiology, 72, 2226–2230.

    Article  Google Scholar 

  • Brenner, D. J., Krieg, N. R., & Staley, J. T. (2005). Bergey’s manual of systematic bacteriology (Vol. 2). New York: Springer.

    Book  Google Scholar 

  • Brezonik, P. L. (1977). Denitrification in natural water waters. Progress in Water Technology, 8, 373–392.

    Google Scholar 

  • Cao, B., Nagarajan, K., & Loh, K. (2009). Biodegradation of aromatic compounds: Current status and opportunities for biomolecular approaches. Applied Microbiology and Biotechnology, 85, 207–228.

    Article  Google Scholar 

  • Chayabutra, C., & Ju, L. (2000). Degradation of n-hexadecane and its metabolites by Pseudomonas aeruginosa under microaerobic and anaerobic denitrifying conditions. Applied and Environmental Microbiology, 66, 493–498.

    Article  Google Scholar 

  • Chénier, M. R., Beaumier, D., Roy, R., Driscoll, B. T., Lawrence, J. R., & Greer, C. W. (2003). Impact of seasonal variations and nutrient inputs on nitrogen cycling and degradation of hexadecane by replicated river biofilms. Applied and Environmental Microbiology, 69, 5170–5177.

    Article  Google Scholar 

  • Cox, C. D. (1986). Role of pyocyanin in the acquisition of iron from transferrin. Infection and Immunity, 52, 263–270.

    Google Scholar 

  • De Sousa, S. N. (1983). Studies on the behaviour of nutrients in the Mandovi estuary during pre-monsoon. Estuarine, Coastal and Shelf Science, 16, 299–308.

    Article  Google Scholar 

  • De Sousa, T., & Bhosle, S. (2012a). Implications of benzoate induced alterations in cell morphology and physiology in Pseudomonas aeruginosa TMR2.13 for potential application in bioremediation and monitoring approaches. Journal of Bioremediation and Biodegradation. doi:10.4172/2155-6199.S1-008.

    Google Scholar 

  • De Sousa, T., & Bhosle, S. (2012b). Isolation and characterization of a lipopeptidebioemulsifier produced by Pseudomonas nitroreducens TSB.MJ10 isolated from a mangrove ecosystem. Bioresource Technology, 123, 256–262.

    Article  Google Scholar 

  • De Sousa, T., & Bhosle, S. (2012c). Microbial denitrification and its ecological implications in the marine system. In Satyanarayana et al. (Eds.), Microbes in environmental management: microbes and environment (pp. 683–700). Heidelberg: Springer.

    Google Scholar 

  • De Sousa, T., Ingole, B., De Sousa, S., & Bhosle, S. (2013). Seasonal variations of nitrate reducing and denitrifying bacteria utilizing hexadecane in Mandovi estuary. Indian Journal of Geo-Marine Sciences, 42, 587–592.

    Google Scholar 

  • Domínguez-Cuevas, P., González-Pastor, J., Marqués, S., Ramos, J., & De Lorenzo, V. (2006). Transcriptional trade-off between metabolic and stress-response programs in Pseudomonas putida KT2440 cells exposed to toluene. Journal of Biological Chemistry, 281, 11981–11991.

    Article  Google Scholar 

  • El-Sheekh, M. M., Ghareib, M. M., & Abou-El-Souod, G. W. (2012). Biodegradation of phenolic and polycyclic aromatic compounds by some algae and cyanobacteria. Journal of Bioremediation and Biodegradation, 3. doi:10.4172/2155-6199.1000133.

    Google Scholar 

  • Ferguson, D., Cahill, O.J., & Quilty, B. (2007). Phenotypic, molecular and antibiotic resistance profiling of nosocomial Pseudomonas aeruginosa strains isolated from two Irish hospitals. Journal of Medical Science and Biology, 1, 1–15.

    Google Scholar 

  • Franzetti, A., Gandolfi, I., Raimondi, C., Bestetti, G., Banat, I.M., Smyth, T.J., Papacchini, M., Cavallo, M., & Fracchia, L. (2012). Environmental fate, toxicity, characteristics and potential applications of novel bioemulsifiers produced by Variovoraxparadoxus 7bCT5. Bioresource Technology, 108, 245–251.

    Article  Google Scholar 

  • Gaonkar, T., Nayak, P.K., Garg, S., & Bhosle, S. (2012). Siderophore producing bacteria from a sand dune ecosystem and the effect of sodium benzoate on siderophore production by a potential isolate. The Scientific World Journal. doi:10.1100/2012/857249.

    Google Scholar 

  • Gilbert, F., Stora, G., Bonin, P., Le Dréau, Y., Mille, G., & Bertrand, J. (1997). Hydrocarbon influence on denitrification in bioturbated Mediterranean coastal sediments. Hydrobiologia, 345, 67–77.

    Article  Google Scholar 

  • Her, J., & Huang, J. (1995). Influences of carbon source and C/N ratio on nitrate/nitrite denitrification and carbon breakthrough. Bioresource Technology, 54, 45–51.

    Article  Google Scholar 

  • Hunter, W. J., & Shaner, D. L. (2010). Biological remediation of groundwater containing both nitrate and atrazine. Current Microbiology, 60, 42–46.

    Article  Google Scholar 

  • Iizuka, H., & Komagata, K. (1964). Microbiological studies on petroleum and natural gas. I. Determination of hydrocarbon-utilizing bacteria. The Journal of General and Applied Microbiology, 10, 207–221.

    Article  Google Scholar 

  • Ingole, B.S., & Sivadas, S. (2007). The slippery coastline. Marine Ecology, 1, 32–37.

    Google Scholar 

  • Janek, T., Łukaszewicz, M., Rezanka, T., & Krasowka, A. (2010). Isolation and characterization of two lipopeptidebiosurfactants produced by Pseudomonas fluorescens BD5 isolated from water from the Arctic Archipelago of Svalbard. Bioresource Technology, 101, 6118–6123.

    Article  Google Scholar 

  • Kariminiaae-Hamedani, H., Kanda, K., & Kato, F. (2004). Denitrification activity of the bacterium Pseudomonas sp. ASM-2–3 isolated from the Ariake Sea Tideland. Journal of Bioscience and Bioengineering, 97, 39–44.

    Article  Google Scholar 

  • Makkar, R. S., Cameotra, S. S., & Banat, I. M. (2011). Advances in utilization of renewable substrates for biosurfactant production. Applied and Industrial Microbiology and Biotechnology, 1, 5.

    Google Scholar 

  • Martínez-Hernández, S., Olguín, E. J., Gómez, J., & Cuervo-López, F. M. (2009). Acetate enhances the specific consumption rate of toluene under denitrifying conditions. Archives of Environmental Contamination and Toxicology, 57, 679–687.

    Article  Google Scholar 

  • Mavrodi, D. V., Blankenfeldt, W., & Thomashow, L. S. (2006). Phenazine compounds in fluorescent Pseudomonas spp. Biosynthesis and regulation. Annual Review of Phytopathology, 44, 417–45.

    Article  Google Scholar 

  • Maya, M. V., Soares, M. A., Agnihotri, R., Pratihary, A. K., Karapurkar, S., Naik, H., & Naqvi, S. W. A. (2011). Variations in some environmental characteristics including C and N stable isotopic composition of suspended organic matter in the Mandovi estuary. Environmental Monitoring and Assessment, 175, 501–517.

    Article  Google Scholar 

  • Moss, M. (2002). Bacterial pigments. Microbiologist, 10–12.

    Google Scholar 

  • Naqvi, S. W. A., Naik, H., Pratihary, A., D’Souza, W., Narvekar, P. V., Jayakumar, D., Devol, A. H., Yoshinari, T., & Saino, T. A. (2006). Coastal versus open-ocean denitrification in the Arabian Sea. Biogeosciences, 3, 621–633.

    Article  Google Scholar 

  • Nerurkar, A. S., Hingurao, K. S., & Suthar, H. G. (2009). Bioemulsifiers from marine microorganisms. Journal of Scientific and Industrial Research, 68, 273–277.

    Google Scholar 

  • Neumann, G., Veeranagouda, Y., Karegoudar, T. B., Sahin, O., Mäusezahl, I., Kabelitz, N., Kappelmeyer, U., Hermann, A. E., & Heipieper, J. (2005). Cells of Pseudomonasputida and Enterobacter sp. adapt to toxic compounds by increasing their size. Extremophiles, 9, 163–168.

    Article  Google Scholar 

  • Norman, R. S., Moeller, P., McDonald, T. J., & Morris, P. J. (2004). Effect of pyocyanin on a crude-oil-degrading microbial community. Applied and Environmental Microbiology, 70, 4004–4011.

    Article  Google Scholar 

  • Peng, F., Wang, Y., Sun, F., Liu, Z., Lai, Q., & Shao, Z. (2008). A novel lipopeptide produced by a Pacific Ocean deep-sea bacterium, Rhodococcus sp. TW53. Journal of Applied Microbiology. doi:10.1111/j.1365-2672.2008.03816.x.

    Google Scholar 

  • Pérez-Pantoja, D., González, B., & Pieper, D. H. (2010). Aerobic degradation of aromatic hydrocarbons. In K. N. Timmis (Ed.), Handbook of hydrocarbon and lipid microbiology (pp. 799–837). Heidelberg: Springer-Verlag.

    Chapter  Google Scholar 

  • Peterson, C. H., & Holland-Bartels, L. (2002). Chronic impacts of oil pollution in the sea: risks to vertebrate predators. Marine Ecology Progress Series, 241, 235–236.

    Article  Google Scholar 

  • Philipp, B., & Schink, B. (2011). Different strategies in anaerobic biodegradation of aromatic compounds: Nitrate reducers versus strict anaerobes. Environmental Microbiology. doi:10.1111/j.1758-2229.2011.00304.x.

    Google Scholar 

  • Pierson, L. S. III, & Pierson, E. A. (2010). Metabolism and function of phenazines in bacteria: Impacts on the behaviour of bacteria in the environment and biotechnological processes. Applied Microbiology and Biotechnology, 6, 1659–1670.

    Article  Google Scholar 

  • Rao, Y. M., & Sureshkumar, G. K. (2000). Oxidative-stress-induced production of pyocyanin by Xanthomonas campestris and its effect on the indicator target organism, Escherichia coli. Journal of Industrial Microbiology and Biotechnology, 25, 266–272.

    Article  Google Scholar 

  • Reber, H. H., & Kaiser, P. (1981). Regulation of the utilization of glucose and aromatic substrates in four strains of Pseudomonas putida. Archives of Microbiology, 130, 243–247.

    Article  Google Scholar 

  • Sardessai, S., & Sundar, D. (2007). Variability of nitrate and phosphate. In S. R. Shetye, D. M. Kumar & D. Shankar (Eds.), The Mandovi and Zuari estuaries (pp. 59–66). Goa: National Institute of Oceanography.

    Google Scholar 

  • Schmeling, S., & Fuchs, G. (2009). Anaerobic metabolism of phenol in proteobacteria and further studies of phenylphosphate carboxylase. Archives of Microbiology, 191, 869–878.

    Article  Google Scholar 

  • Seitzinger, S. P., Harrison, J. A., Bohlke, J. B., Bouwman, A. F., Lowrance, R., Peterson, B., Tobias, C., & Van Drecht, G. (2006). Denitrification across landscapes and waterscapes: A synthesis. Ecological Applications, 16, 2065–2090.

    Article  Google Scholar 

  • Shetye, S. R., Gouveia, A. D., Singbal, S. Y., Naik, C. G., Sundar, D., Michael, G. S., & Nanpoothiri G. (1995). Propagation of tides in the Mandovi-Zuari estuarine network. Proceedings of the Indian Academy of Science (Earth Planet Sci), 104, 667–682.

    Google Scholar 

  • Shinoda, Y., Sakai, Y., Uenishi, H., Uchihashi, Y., Hiraishi, A., Yukawa, H., Yurimoto, H., & Kato, N. (2004). Aerobic and anaerobic toluene degradation of a newly isolated denitrifying bacterium, Thauera sp. strain DNT-1. Applied and Environmental Microbiology, 70, 1385–1392.

    Article  Google Scholar 

  • Sikkema, J., De Bont, J. A. M., & Poolman, B. (1995). Mechanisms of membrane toxicity of hydrocarbons. Microbiology Reviews, 59, 201–222.

    Google Scholar 

  • Sivadas, S., Gregory, A., & Ingole, B. (2008). How vulnerable is Indian coast to oil spills? Impact of MV Ocean Seraya oil spill. Current Science, 95, 504–512.

    Google Scholar 

  • Song, B., & Ward, B. B. (2005). Genetic diversity of benzoyl coenzyme A reductase genes detected in denitrifying isolates and estuarine sediment communities. Applied and Environmental Microbiology, 71, 2036–2045.

    Article  Google Scholar 

  • Van der Zaan, B. M., Saia, F. T., Stams, A. J. M., Plugge, C. M., De Vos, W. M., Smidt H., Langenhoff, A. A. M., & Gerritse, J. (2012). Anaerobic benzene degradation under denitrifying conditions: Peptococcaceae as dominant benzene degraders and evidence for a syntrophic process. Environmental Microbiology, 14, 1171–1181.

    Article  Google Scholar 

  • Van Hamme, J. D., Singh, A., & Ward, O. P. (2003). Recent advances in petroleum microbiology. Microbiology and Molecular Biology Reviews, 67, 503–549.

    Article  Google Scholar 

  • Vázquez, S., Nogales, B., Ruberto, L., Hernández, E., Christie-Oleza, J., Lo Balbo, A., Bosch, R., Lalucat, J., & MacCormack, W. (2009). Bacterial community dynamics during bioremediation of diesel oil-contaminated Antartic soil. Microbial Ecology, 57, 598–610.

    Article  Google Scholar 

  • Vignesh, R., Haq, B. M. A., & Srinivasan, M. (2011). Biodegradation prospective of microbes. International Journal of Environmental Science, 2, 741–754.

    Google Scholar 

  • Wang, C., You, S., & Wang, S. (2006). Purification and characterization of a novel catechol 1,2-dioxygenase from Pseudomonas aeruginosa with benzoic acid as a carbon source. Process Biochemistry, 41, 1594–1601.

    Article  Google Scholar 

  • Wang, Y., Kern, S. E., & Newmann, D. K. (2010). Endogenous phenazine antibiotics promote anaerobic survival of Pseudomonas aeruginosa via extracellular electron transfer. Journal of Bacteriology, 192, 365–369.

    Article  Google Scholar 

  • Wasielewski, E., Tzou, D., Dillmann, B., Czaplicki, J., Abdallah, M. A., Atkinson, R. A., & Keiffer, B. (2008). Multiple conformations of the metal bound pyoverdinePvdI, a siderophore of Pseudomonas aeruginosa: A nuclear magnetic resonance study. Biochemistry, 47, 3397–3406.

    Article  Google Scholar 

  • Wentzel, A., Ellingsen, T. E., Kotlar, H., Zotchev, S. B., & Throne-Holst, M. (2007). Bacterial metabolism of long-chain n-alkanes. Applied Microbiology and Biotechnology, 76, 1209–1221.

    Article  Google Scholar 

  • Wilson, L. P., & Bouwer, E. J. (1997). Biodegradation of aromatic compounds under mixed oxygen/denitrifying conditions: a review. Journal of Industrial Microbiology and Biotechnology, 18, 116–130.

    Article  Google Scholar 

  • Yabuuchi, E., & Ohyama, A. (1972). Characterization of “pyomelanin”-producing strains of Pseudomonas aeruginosa. International Journal of Systemic Bacteriology, 22, 53–64.

    Article  Google Scholar 

  • Zehr, J., & Ward, B. B. (2002). Nitrogen cycling in the ocean: New perspectives on processes and paradigms. Applied and Environmental Microbiology, 68, 1015–1024.

    Article  Google Scholar 

  • Zhang, H., Wan, H., Song, L., Jiang, H., Wang, H., & Qiao, C. (2010). Development of an autofluorescentPseudomonasnitroreducens with dehydrochlorinase activity for efficient mineralization of γ-hexachlorocyclohexane (γ-HCH). Journal of Biotechnology, 146, 114–119.

    Article  Google Scholar 

  • Zhang, Z., Hou, Z., Yang, C., Ma, C., Tao, F., & Xu, P. (2011). Degradation of n-alkanes and polycyclic aromatic hydrocarbons in petroleum by a newly isolated Pseudomonas aeruginosa DQ8. Bioresource Technology, 102, 4111–4116.

    Article  Google Scholar 

  • Zhao, S., Hu, N., Chen, Z., Zhao, B., & Liang, Y. (2009). Bioremediation of reclaimed wastewater used as landscape water by using the denitrifying bacterium Bacillus cereus. Bulletin of Environmental Contamination and Toxicology, 83, 337–340.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Trelita de Sousa .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

de Sousa, T. (2015). Denitrifying Bacteria: Physiological Response to Hydrocarbons. In: Borkar, S. (eds) Bioprospects of Coastal Eubacteria. Springer, Cham. https://doi.org/10.1007/978-3-319-12910-5_3

Download citation

Publish with us

Policies and ethics